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TIME STEPWISE LOCAL VOLATILITY

Hyeong-Ohk Bae and Hyuncheul Lim

Abstract. We propose a path integral method to construct a time step-

wise local volatility for the stock index market under Dupire’s model. Our

method is focused on the pricing with the Monte Carlo Method (MCM).
We solve the problem of randomness of MCM by applying numerical in-

tegration. We reconstruct this task as a matrix equation. Our method
provides the analytic Jacobian and Hessian required by the nonlinear

optimization solver, resulting in stable and fast calculations.

1. Introduction

We propose a new practical method for the series of the local volatility
(LV) curves under Dupire’s model. Our method is specialized in the practical
usage. It is designed for MCM with non equidistant time intervals and complex
contingency claims.
Problems arising from the calibration of the local volatility. The
following typical problems appear in LV generation:

1. Inverse Problem of LV: Calibration of LV is known as a mathematical
inverse problem. This is because LV provided as a PDE coefficient has
been set to very small grid sizes dT and dK, but in practice, the market
call option prices are recovered for relatively large dT and dK grids.
Moreover, call option prices not only change sensitively depending on
LV, but are given insufficiently.

2. Finite Difference Method: The Finite Difference Method (FDM) solves
Dupire’s PDE (2b) directly. Even though there are many papers and
results about this, the accuracy stability issue still remains: a state
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space should be tightly discretized to get reasonable accuracy. To ob-
tain stable results, a pre-processing work is required to fine-tune the call
option price curves used as an input to FDM to fit the grid structure
of FDM (see Appendix A).

3. Monte-Carlo Method: MCM is most popular for pricing derivatives
since its flexibility and simplicity allows high-speed calculation of deri-
vatives with complex contingency claims. This method is performed by
calculating the expectated values of the future price scenarios generated
from Dupire’s model (1). LV made from FDM are not well suitable for
use in MCM since the values appropriate for the discrete space of the
FDM are different from the values required by MCM. We note that
when MCM calculates the price, it uses the MC integration, which
takes the average of the prices along random paths. For that reason,
MCM’s randomness causes difficulty to calibrate LV.

Our contribution. We introduce the time stepwise LV suitable for MCM and
a new calibration method. Instead of creating MC scenarios, we use the integral
equation introduced in [6] and numerical integration. And it provides analytic
Jacobian and Hessian matrices for the nonlinear optimization problem of the
time stepwise LV. While implementing this idea, we proceed in the following
order: 1) to construct a precise discretized state space, 2) to use the cubic
spline approximation of the call option price curves, 3) to do the calibration
process of Arrow-Debreu prices, and finally, 4) to compute the time stepwise
LV.
Organization. In Section 2, introduces the time stepwise LV. We explain
the relationship between the transition density function inherent in Dupire’s
model, and the Arrow-Debreu price and market call option prices to be used
for our method. We review results in [5, 6], which are main theoretical basis
of our method, and sketch a brief idea for calculation of the time stepwise LV.
In Section 3, we implement our theory based on the path integral formula,
and mechanically discretize the needed contents for applying the theorem. In
Section 4, conclusion and a practical example are presented.

2. Time stepwise local volatility

2.1. Dupire’s model and partial differential equation

Dupire’s model is the following ([9, 10]):

(1)
dS(t)

S(t)
= (r(t)− q(t))dt+ σ(S(t), t)dW (t).

Here, S(t) is a stock price at time t > 0, S(0) = S0 its initial price, r(t) and q(t)
are instantaneous interest and dividend rates, and W (t) is the Wiener process
with a risk neutral measure. The coefficient of the Wiener process, σ(S(t), t),
is a function of time t and S(t), called the local volatility (LV). The existence
and the uniqueness of a solution to Dupire’s stochastic differential equation (1)
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and its associated transition density function P are well known [13, Theorem
5.2.1].

We denote by S := {(K,T ) |K > 0, T > 0} the state space consisting of all
possible future strikes and maturities which can be reached by the process (1).
The transition density function P = P (K,T ) starting from the origin (S0, 0)
and reaching (K,T ) is a solution of the Kolmogorov forward equation (2a).
The call option prices with different maturities and strikes of the same index
satisfy Dupire’s partial differential equation (PDE) (2b),

∂P

∂T
=

1

2

∂2(σ2K2P )

∂K2
− ∂((r(T )− q(T ))KP )

∂K
Kolmogorov Equation,(2a)

∂C

∂T
=
σ2K2

2

∂2C

∂K2
− (r(T )− q(T ))K

∂C

∂K
− q(T )C Dupire’s PDE,(2b)

where C := C(K,T ) is a call option price and σ := σ(K,T ) is an instantaneous
LV with strike K and maturity T .

2.2. Implied and transition density function

The transition density function P (ST , T ) arriving at (ST , T ) is, in particular,
called an implied probability density function of the market. The analytic form
of P (ST , T ) is not known. The probability function P (ST , T ) associated to (1)
satisfies the following Chapman-Kolmogorov equation [11, Eqs. 2.23, 2.24],

(3) P (ST , T ) =

∫ ∞

0

p(ST , T |St, t;σ)P (St, t)dSt,

where p(end | start;σ) is a transition density function from start to end with
volatility σ. From a practical point of view, since Dupire’s model is handled
in a discretized space, the time and stock price ranges are discretized to the
2-dimensional grid. In this case, as shown in Figure 2, it is assumed that the
instantaneous LV of the Dupire model is constant from the starting point of the
grid to all subsequent grid points. Let us refer to this as a time stepwise LV,
which connects one point of the state space to all other points of the next time.
If the next time of t is T , then the transition density function p connecting a
starting point (St, t) to an ending point (ST , T ) is obtained from (1) with a
constant volatility σ,

(4) p(ST , T |St, t;σ) =
1

STσ
√

2π(T − t)
exp

(
− (lnST − lnSt − µ̄)

2

2σ2(T − t)

)
,

where µ̄ := (r̄− q̄− 1
2σ

2)(T − t), r̄ :=
∫ T
t
r(s)ds/(T − t), q̄ :=

∫ T
t
q(s)ds/(T − t),

T > t ≥ 0.

2.3. Arrow-Debreu prices

The discounted implied density function e−
∫ T
0
r(t)dtP (ST , T ) of (3) is called

the Arrow-Debreu (AD) price [4]. AD price is the present value of the security
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AD(ST , T ), whose payoff function PayoffAD(ST , T ) is 1 when the stock price
S at time T is ST and 0 otherwise, that is,

(5) PayoffAD(ST , T ) = δ(ST − S) :=

{
1, if S = ST ,

0, otherwise.

As in the case of p(ST , T |St, t), AD price starting from time t ≥ 0 is directly
inferred from its definition:

AD(ST , T ) := e−
∫ T
0
r(t)dtP (ST , T ) for t = 0,(6a)

ad(ST , T |St, t;σ) := e−
∫ T
t
r(u)dup(ST , T |St, t;σ) for t > 0.(6b)

In [5], authors have obtained the relationship between transition (probability)
density function (or AD price) and the price of the European call options in
the following:

C(K,T ) = e−
∫ T
0
r(t)dt

∫ ∞

K

(S −K)P (S, T )dS,(7a)

∂C

∂K
= −e−

∫ T
0
r(t)dt

∫ ∞

K

P (S, T )dS ≤ 0,(7b)

∂2C

∂K2
= e−

∫ T
0
r(t)dtP (K,T ) ≥ 0,(7c)

where C(K,T ) is a current value of a call option price with strike K and ma-
turity T . With similar notations to (3) and (6), we denote by c(K,T |St, t) the
(St, t) start call option price with strike K and maturity T , clearly C(K,T ) =
c(K,T |S0, 0). The specific method of generating a precise AD price from the
call option price curve is described in Appendix A.

2.4. Path integral formula

Feynman-Kač stochastic representation theorem [13] state that:

Theorem 2.1 (Feynman–Kač). Assume that C = C(K,T |S, t) is a (S, t)
value (solution) of the boundary value problem of a call option with strike K
and maturity T .

∂C

∂t
+ µ(S, t)

∂C

∂S
+

1

2
σ(S, t)2S2 ∂

2C

∂S2
− rC = 0,

C(K,T |S, T ) = max(S −K, 0),

where C = C(K,T |S, t).
Assume furthermore that the process σ(S, t)2S2 ∂C

∂S (u, Su) is in L2 1, where S
is defined (1). Then C has the representation

C(K,T |S, t) = ES,t [max(S(T )−K, 0)] ,

1Function f ∈ L2[a, b] implies
∫ b
a E[f2(S(u))]du <∞ and f(S(t)) is adapted to a filtration

generated by the process S(u), u ≤ t up to time t.
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where ES,t implies expectation under the filtration generated by the process S
up to time t with S(t) = S.

Proof. From reference Oksendal [13, Theorem 8.2.1]. �

Since S is a stochastic variable, and u < T , then we have the law of iterated
expectations result.

C(K,T |S0, 0) = ES0,0

[
ES,u [max(S(T )−K, 0)]

]
,

where C(K,T |S0, 0) = C(K,T ) from our previous notation, which can be
represented as an integral form.

Theorem 2.2 (Path integral call options formula). A European call option
C(K,T ) maturing at time T and strike K relates to the start time u, 0 < u < T
value of a continuum of forward start European call options with strike K and
matures at T .

C(K,T |S0, 0) =
∫ ∞

0

max(S −K, 0)AD(S, T )dS

=
∫ ∞

0

(∫ ∞

0

max(S −K, 0)ad(S, T |Su, u;σ)dS

)

︸ ︷︷ ︸
c(K,T |S,u;σ)

AD(Su, u)dSu,(8a)

c(K,T |S, u;σ) = e−
∫ T
u
q(s)dsN(d1)− e−

∫ T
u
r(s)dsKN(d2),(8b)

The formula in underbrace is a (Su, u) value of a call option, which could be
calculated from Black-Scholes formula, where σ = σ(S, u), (8b) is the Black-
Scholes formla for the call option price,

d1 :=
ln (K/S) +

∫ T
u

(r(s)− q(s)) ds
σ
√
T − u +

1

2
σ
√
T − u, d2 := d1 − σ

√
T − u

and AD(Su, u) = ∂2

∂S2
u
C(Su, u) from Breeden’s (7). This is sometimes called

“path integral formula” in mathematical finance, and play a key role in our
method.

Proof. trivial. �

Equation (8a) implies the replication of a market call option price using the
discounted implied density AD(S, u) and equation (8b) implies the strike K
and maturity T call option value at σ at (S, u). It should be noted that the
volatility σ in (8a) is a fixed at (S, u) and is applied up to all strike prices K
at time T . Therefore, c(K,T |S, u;σ) is simply expressed by using the Black-
Scholes formula (8b).

2.5. Path generation using time stepwise local volatility

Consider the case of creating a scenario of stock prices at times T1, . . . , Tm.
The simulated stock prices S0, S1, . . . , Sm 2 should satisfy (9a), which is an

2Super subscripts were used to distinguish them from discretized nodes in stock prices.
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exact solution of (1). It must be equivalent to (9b) which uses the constant
volatility σ̄i,

Si+1 = Si · exp

(∫ Ti+1

Ti

(r(u)−q(u)− 1

2
σ(S, u)2)du+

∫ Ti+1

Ti

σ(S, u)dW (u)

)
(9a)

= Si · exp

(∫ Ti+1

Ti

(r(u)−q(u)− 1

2
σ̄2
i )du+σ̄iW (τi)

)
,(9b)

where τi := Ti+1−Ti and σ̄i := σ̄(Si, Ti) is the volatility that is fixed at (Si, Ti).
We call it a time stepwise LV.

2.6. Comparison of dense and time stepwise LV

From (1), we obtain Dupire’s PDE (2b) and a path integral formula (8a)
(Theorem 2.2). Calculation diagram of (2b) and (8a) is described in the fol-
lowing: (

Dupire’s PDE
(2b)

) (
Dense LV

used for FDM

)
(
Dupire’s Model

(1)

)
(

Path integral
formula (8a)

) (
Time Stepwise LV

used for MC

)
.

FDM

Theorem 2.2

Quad

Here, FDM means calibration using FDM as its pricing scheme. The lo-
cal volatility σ(S, u) obtained by FDM exists on a dense mesh which FDM
requires. The method Quad is the calibration using the numerical integra-
tion(quadrature) as its pricing scheme, the time stepwise volatility σ̄(S(ti))
obtained.

2.7. Overview of the time stepwise local volatility calibration

Step 1. For each maturity T , assume that the possible stock price range is
discretized to S1, . . . , SN , and we have call option prices C(Si, T ) and
piecewise linear AD price curve ĀD(Si, T ) at the discretized stock price
nodes is derived from the cubic spline approximation of call option price
curve, which is explained in Appendix A.

Step 2. The equation (8a) is rewritten as the quadrature rule such that

(10) C(Ki, T ) ≈
N∑

l=1

wl c(Ki, T |Sl, u; σ̄l) ĀD(Sl, u) =: fi(σ̄),
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where u < T , wl is a weight for specific quadrature rule.3 The right-
hand side is a function fi of σ̄ = (σ̄1, . . . , σ̄N ). For each i, C(Ki, T ) is
a given market call option price.

Step 3. We construct the least square problem for finding σ̄ of loss function F :

F (σ̄) := min
σ̄

N∑

i=1

|vi(C(Ki, T )− fi(σ̄))|2.

Commonly, this nonlinear least squares optimization problem is solved
by using TRF method [14]. Since the method we present easily cal-
culates analytic Jacobian and Hessian, it guarantees superlinear con-
vergence by applying the TRF-Newton method. The weighting factor
vi > 0 is introduced for enhancing the accuracy for the relatively small
value term.4

3. Implementation of time stepwise local volatility

Based on Theorem 2.2, the process of reassembling the equation (8a) in a
discrete state space is described. At this time, the market volatility, which is
the data required for input, and the call option price obtained from it must
satisfy the following conditions.

3.1. Requirements and necessary conditions

1. Piecewise Linear Approximation of Arrow-Debreu Price Curves: In Ap-
pendix A, we show that a piecewise linear approximation of the AD
price curve is derived from the cubic spline approximation of the call
option price curve. AD price is a discounted probability density func-
tion, so the integral domain is limited to finite intervals.
Note: Even if we do not use this part, our method works well as long
as a call option price is provided that does not violate the no-arbitrage
conditions. Method A systematically corrects the arbitrage opportu-
nity for a given call option price as input and generates Arrow-Debreu
price5.

2. Conditions for Call Option Price Curves: Let’s look at Breeden’s rela-
tion (7) again. The first equation is negative and the second is positive.
Adding no calendar arbitrage condition (11c) gives the necessary con-
ditions for the call option price surface, which are important conditions
to prevent negative transition probability density of (1),

∂C(K,T )

∂K

∣∣∣
Ki

< 0, negative slope for strike derivative(11a)

3We use trapzoidal and Simpson’s rule for exact matching the regular strike nodes.
4The time values of the in/out of the money options are very small, resulting in a minor

contribution to the total error. From the view point of root finding, it gives relatively large

learning rate for speeding up.
5This method is included in the author’s paper, yet to be published.
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∂2C(K,T )

∂K2

∣∣∣
Ki

> 0, convexity for 2nd derivatives for strike(11b)

C(K,T ) < C(K∗, U), no calendar arbitrage(11c)

where T < U and Ke
∫ U
T

(r(s)−q(s))ds = K∗.
3. Conditions for Risk Neutral Pricing: Since the call option price function

is approximated by using the cubic splines in Section A, the second
derivative with respect to the exercise price becomes a piecewise linear
function which represents an AD Price. The following three conditions
should be satisfied: 1) The Price Matching Condition that restores the
call option price observed at the regular strike price node point, 2) The
discounted density function, which is the condition of the distribution
function, and 3) The forward risk neutral condition:

Price Matching Condition:

∫ ∞

0

Max(S −Ki, 0)AD(S, T )dS = C(Ki, T ),

(12a)

Discounted Density Function:

∫ ∞

0

AD(S, T )dS = e−
∫ T
0
r(s)ds,

(12b)

Forward Risk Neutrality:

∫ ∞

0

S ·AD(S, T )dS = e−
∫ T
0
q(s)dsS(0),

(12c)

where Ki, i = 1, . . . , N , is a regular exercise node for the stock index
options markets and C(Ki, T ) is observed call option price at strike
Ki and maturity T . For condition (12b), the trapezoidal rule is ap-
plied, and for conditions (12a) and (12c), Simpson’s rule is used for
numerical integrals. Since the integration domain is a semi-infinite and
the observed values are matched only at the given regular strike price
node, the integral range is properly truncated and variably discretized
to include the strike price nodes.

3.2. Discrete state space construction

3.2.1. Technical considerations. This paragraph describes the technical points
that pays attention for implementation.

1. Numerical Integration Rule
We use trapezoidal and Simpson’s rules, which are simple non-Gaussian
type integration methods. Although the Gaussian quadrature is gener-
ally an effective method, the reasons for choosing it are as follows: (1)
The strike prices should be a subset of node points, called abscissas for
the integration. (2) The AD price we generate is given as a piecewise
linear function, a linear function between the nodes. (3) AD price,
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which is a piecewise linear function with positive value, must have a
bounded region of integration.

2. Grid Refinment for Optimization and Numerical Integration
For simplicity, we use the unitized stock and strike prices, which are
called the spot moneyness. Define the unitized nodes (spot moneyness)
as x given by,

(13) x = {x1, . . . , xN},
where x1 = 0 and initial starting point xo = 1, for some o = i ∈
{1, . . . , N}. The number of index N > n, which is more finer than
unitized regular strike nodes: {K1/S0, . . . ,Kn/S0} ⊂ x. The reason
N > n is that the number of nodes must be large for the accuracy
of numerical integration. Next, we truncate the semi-infinite region to
xmax = xN such that

∫∞
xmax

P (x)dx < ε. However, since P (x) is a non-

negative piecewise linear function (23), it must be zero for x > xmax

for all of the observed maturities Tj , j = 0, . . . ,m.
3. Refinment of the First Time Node

Since the call option prices at T1 have different implied volatilities,
they cannot be created using one fixed volatility at the origin. We
assume that the process (1) starting at T0 = 0 with a fixed volatility
σ0 reflects the diffusion over the intermediate point and then moves
to T1 to generate a call option prices with different implied volatilities
at T1. This is important for pricing with LV, especially when using
MCM. Therefore, let’s mark the mid-point of [0, T1] with T1/2. The
initial volatility σ0 must also meet the calendar arbitrage condition
bscall(x, T1/2;σ0) < C(xforward, T1) for x ∈ x where C(xforward, T1) is

the strike xforward = xe
∫ T1
T1/2

(r(s)−q(s))ds
call option price with maturity

T1, and bscall(x, T1/2;σ0) is the Black-Scholes call option price with
strike x and maturity T1/2.

3.2.2. Assembly of discrete state space. The practical LV following Dupire’s
model is a function on the state space S. And the mesh we construct has a
variable time interval, and discretized spot-moneyness x.
The followings are variables in discrete state spaces.

S : discretized state space, {xji := (xi, Tj) | i ∈ I, j ∈ J},
(14a)

σji : stepwise volatility which is fixed from xji to xj+1
l , ∀l ∈ I,

(14b)

aji,l : one time step Arrow-Debreu price from xji to xj+1
l with σji ,

(14c)

Aji : Arrow-Debreu price from the origin xo to xji ,

(14d)
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P ji : probability(marginal) Density from xo to xji ,

(14e)

wi : weight for the Simpson or Trapzoidal numerical integration scheme,
(14f)

cjl,i : strike xi, maturity Tj+1 call option price starting at point xjl with σjl ,

(14g)

Cji : strike xi, maturity Tj call option price at xo with implied volatility Σji ,

(14h)

σ0 : initial starting volatility from xo(= 1) to x1
l , ∀l ∈ I.

(14i)

Here, I = {1, . . . , N}, J = {0, 1/2, 1, . . . ,m}. The AD price starting at xo

arriving xji is Aji = e−
∫ Tj
0 r(s)dsP ji , which comes from the effect of all different

stepwise local volatilities σkl , l ∈ I, k < j applied to the dynamics x(t) =

S(t)/S0 starting at xo and reaching xji . Assuming that we know Aji , then
our purpose is to compute each of the σkl , k < j from (3), (8). A discrete

relationships between Cj+1
i and {cjl,i, a

j
l,i}, between Aj+1

i and {Ajl , a
j
l,i}, which

corresponds to (8a) and (3), are generated by the following integration rule in
the next subsection.

3.3. Quadrature rule

Simpson’s method uses a formula to obtain an area surrounded by a qua-
dratic equation passing through three points. If f(x) is a quadratic equation
and for given three x points a < c < b, values f(a), f(c), f(b) are known, then
the Lagrange interpolation is the following:

f(x) = f(a)
(x− c)(x− b)
(a− c)(a− b) + f(c)

(x− a)(x− b)
(c− a)(c− b) + f(b)

(x− a)(x− c)
(b− a)(b− c) .

If c = a+b
2 , then

∫ b
a
f(x)dx = b−a

6 (f(a) + 4f(c) + f(b)).

Lemma 3.1. If f(x) and g(x) are both piecewise linear functions with node
points x1, . . . , xN , and their function values at node points are f1, . . . , fN and
g1, . . . , gN , respectively, then

∫ xN

x1

f(x)g(x)dx =

N−1∑

i=1

xi+1−xi
6

(
f(xi)g(xi)+4f

(
xi+xi+1

2

)
g

(
xi+xi+1

2

)

+ f(xi+1)g(xi+1)
)

= w1f1 + w2f2 + · · ·+ wN−1fN−1 + wNfN ,
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where wi =





(2g1 + g2)∆x1 for i = 1,

(2gi + gi+1)∆xi + (2gi + gi−1)∆xi−1 for i = 2, . . . , N − 1,

(2gN + gN−1)∆xN−1 for i = N,
and ∆xi = xi+1 − xi, i = 1, . . . , N − 1.

Proof. For piecewise linear function f , it is clear f
(
xi+xi+1

2

)
= f(xi)+f(xi+1)

2 ,

i = 1, . . . , N − 1, the same as g. �

In our cases for (8), AD(S, u), which corresponding to g, is a piecewise linear
function, and we approximate c as a piecewise linear function of x.

3.4. Backward and forward matrix equations

Lemma 3.2 (Discrete Version of the path integral call options with call op-
tions). By applying Lemma 3.1, the discrete version of Theorem 2.2 is estab-
lished,

Cj+1
i =

N∑

l=1

wlc
j
l,iA

j
l ,(15a)

cjl,i = bscall(xl, xi, τj , σ
j
l ),(15b)

where cjl,i = cjl,i(σ
j
l ) is a functions of the volatility σjl , which can be easily

calculated by Black-Scholes call option formula,

(16) cjl,i = bscall(xl, xi, τj , σ
j
l ) = dqjxlN(d1

l,i)− df jxiN(d2
l,i),

where df j , dqj , d1
l,i, d

2
l,i are discretized version of (8b) for the time interval

[Tj , Tj+1].

Volatilities σji , i ∈ I can be obtained by optimization that minimizes the sum
of squares of the differences between reconstructed call option values and real
values by setting volatilities as unknown. After finding σji , the time Tj+1, AD

prices ADj+1
i , i ∈ I are calculated by using the discrete version of Chapman-

Kolmogorov equation (3),

Aj+1
i =

N∑

l=1

wlA
j
l a
j
l,i,(17a)

ajl,i =
df j

xlσ
√

2πτ
exp

(
− (lnxl − lnxi + µ)

2

2σ2τ

)
,(17b)

where σ = σjl , µ = − ln df j + ln dqj and τ = Tj+1 − Tj .
Theorem 3.3. Combining the discussions we have discussed with lemmas so
far, we can construct two matrix equations with backward and forward schemes
that generate stepwise LV and use them to reconstruct the next level of Arrow-
Debreu price.
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◦ Reconstruction of Call Option
The equation (15a) is rewritten as a matrix form

(18) Cj+1 = [cj ] · (w �Aj), (backward)

where [cj ] is the matrix of forward start one step call option prices
with rows: starting nodes, cols: target node, and � implies Hadamard
product,




Cj+1
1

Cj+1
2
...

Cj+1
N




︸ ︷︷ ︸
Cj+1

=




c11 c21 . . . cN1

c12 c22 . . . cN2

...
...

...
...

c1N c2N . . . cNN




︸ ︷︷ ︸
[cj ]




w1A
j
1

w2A
j
2

...

wNA
j
N




︸ ︷︷ ︸
w�Aj

.

For example, the first row in matrix representation of (18) is a local

forward start call option vector with element cjl,i which starts at xjl with

volatility σjl , maturity Tj+1, strike x1. Thus, the N ×N matrix [cj ] is

a function of σj = (σj1, . . . , σ
j
N )>. By the inductive assumption for the

maturity time Tj, we have AD price vector Aj, and the call option price
vector Cj+1 from the refined implied volatility surface. Our objective is
to find a matrix [cj ] as a function of σj. In this step, (backward) (18)
means that this matrix equation is calculated by the backward scheme,
given left and right most vectors, Cj+1 and w �Aj, which is a main
topic for the next section. After finding σj, we obtain, at time Tj+1,
AD price vector Aj+1 by the formula (19) using the calculated σj.
◦ Reconstruction of Arrow-Debreu Price

(19) Aj+1 = [aj ] · (w �Aj), (forward),




Aj+1
1

Aj+1
2
...

Aj+1
N




︸ ︷︷ ︸
Aj+1

=




a11 a21 . . . aN1

a12 a22 . . . aN2

...
...

...
...

a1N a2N . . . aNN




︸ ︷︷ ︸
aj




w1A
j
1

w2A
j
2

...

wNA
j
N




︸ ︷︷ ︸
w�Aj

.

The colored first row in matrix representation of (19) is a vector
(aj)>l→1. (forward) implies this matrix equation is normally calcu-
lated using multiplicative two known right hand side terms to obtain
Aj+1.

3.5. Calibration

Equation (18) is a system of nonlinear equations, and left and right most
hand side vectors are already known, [cj ] is a function of σj . In fact, this is
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a nonlinear minimization problem of dimension m. We simplify the equation
(18) and define the loss function F as a function of σ(= σj) as

(20) F (σ) = ||y − f(σ)||22,v =

N∑

i=1

|vi(yi − fi(σ))|2,

where y = Cj+1, f(σ) = [cj ] ·(w�Aj) and F : RN → R1 is an N -dimensional
scalar function. The weight term v = (v1, v2, . . . , vN ), vi = 1/max(vega(xi), ε)
for some ε > 0, vega(xi) is same as (21c), but is calculated using average market
volatility. It is the optional correction factor that multiplied by the values that
come out too small to match [3].

3.6. Analytic Jacobian and Hessian matrices

The representative algorithm for solving the multivariate nonlinear least
squares problem is the hybrid algorithm in [14], which uses the Trust Region
dogleg method [12] and Levenberge-Marquardt algorithm [12] using the damp-
ing factor. These methods solve approximated quadratic equation for every
stage. In this process, methods need Jacobian or Hessian or pseudo Hessian
(Jf
>Jf ) matrices for the accuracy and stability as well as for the computa-

tional speed. If Jacobian and Hessian are not provided to the optimization
solver, the calculations are very slow, and stability and accuracy problems oc-
cur seriously. In the presented method, these derivatives can be calculated in
analytic form (21c). This is one of the biggest advantages of using the proposed
method.

Lemma 3.4 (Analytic Jacobian and Hessian for the Loss function F ). The
Jacobian and Hessian of the loss function F is calculated as follows:

∇F (σ) =

N∑

i=1

fi(σ)∇fi(σ) = J>f (σ)f(σ),

∇2F (σ) =

N∑

i=1

∇fi(σ)∇fi(σ)>

︸ ︷︷ ︸
Jf
>Jf

+

N∑

i=1

fi(σ)∇2fi(σ).

Proof. We omit the time j-superscription for brevity, the i-component fi of f ,

fi(σ) =

N∑

l=1

wlAlcl,i(σl),(21a)

∂fi
∂σl

= wlAl
∂cl,i(σl)

∂σl
,(21b)

∂2fi
∂σk∂σl

= wlAl
∂2cl,i(σl)

∂2σl
for k = l, 0 otherwise,(21c)
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where l ∈ I, d1
l,i, dq = dqj , τ = τj are the same as in (16), and φ is the

standard normal probability function. The partial derivatives are calculated to
the following:

∂cl,i(σl)

∂σl
= dq xlφ(d1

l,i)
√
τ ,(22a)

∂2cl,i(σl)

∂2σl
= dq xlφ(d1

l,i)
√
τ
d1
l,id

2
l,i

σl
for l ∈ I.(22b)

Form (21) and (22), the Jacobian matrix of f with respect to σ can be expressed
as a N ×N matrix,

Jf = (∇f1,∇f2, . . . ,∇fN )>

=

[
wlAl

∂cl,i(σl)

∂σl
= dq wlxlAlφ(d1

l,i)
√
τ

]

i,l=1,...,N

,

where d1
l,i is in (16). The Gradient and Hessian matrices of the loss function

F are as in the lemma. �

3.7. Using only the real strike nodes volatilities

It is more efficient to matching the values to the nodes with real strikes than
to use all the x-grids x. However, the reconstruction of the call option price
needs entire node points of x, so the volatility values of the remaining nodes
applies linear interpolation. Both ends of the entire node and the two left and
right most ends of the used nodes can be left in a fixed value or a straight line
with a slope. The results are shown in Figure 1.
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Stepwise Local Volatility for Each of the Maturity

Figure 1. Generated Local Volatility S&P500, Date: 07/11/2019
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4. Practical example and conclusion

We have shown the method of calibrating the LV surface based on the in-
tegral equation. The popularly used method is FDM, which suffers from dis-
cretization error. To obtain an available LV, the state space needs to be closely
discretized. These make a difference when applying MCM to derivatives pricing
with local volatilities which are calibrated from FDM. To handle this inconsis-
tency, we adopt the quadrature method for the pricing tool of calibration. The
important characteristic of our methodology is to use AD prices as a building
block.

Table 1 and Figure 1 show S&P500 time stepwise LV at 07/11/2019, values,
and piecewise linear interpolated curves for each option maturities. Dotted
points are real strike nodes for used in optimization. Table 2 compare call
option values using the implied volatility and resulting time stepwise LV. The
price is multiplied by 100 to see the value on a percent basis. Figure 2 illustrates
piecewise linear AD price at maturity as described in Section A. Figure 3 shows
a picture of the call option reconstruction method presented. The process
of restoring prices by embedded volatility by LV is similar to a multi-layer
functional neural network.

Remaining options maturity dates are 43, 253, 407, 561, 771, 1107, 1499
and left most points of moneyness are 0.6, 0.55, 0.5, 0.45, 0.45, 0.35, 0.35
and rightmost points 1.65, 1.75, 1.85, 2.0, 2.1, 2.2. The unitized strike nodes
were subdivided into 0.025 intervals, of which the used node points were 0.05
intervals. The total time spent on optimization tasks with seven maturities and
initial additional processing at t1/2 is 5.78 seconds. In addition, the processing
time for generating piecewise linear AD price curves described in Appendix is
2.43 seconds in Python version 3.6 with equipment: 1.1GHz dual core Intel
Core M CPU notebook.

Appendix A. Constrained calibration of Arrow-Debreu price

Least Squares Cubic Spline approximation. Let C(x) be a cubic spline polyno-
mial with knots x1, . . . , xN ,

(23) C(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3,

where x ∈ [xi, xi+1], i = 1, . . . , N −1. The polynomial C(x) with the condition
c1 = cN = 0 at the end points x1, xN is called the natural cubic spline. Fol-
lowing [8, Ch. XIV], the relation of a = (a1, . . . , aN )> and c = (c1, . . . , cN )>

is written in the matrix form

(24) Rc = 3Q>a,

where c1 = cN = 0, R is a symmetric tridiagonal matrix of dim n×n of which
i = 2, . . . , N − 1 rows are ∆xi−1, 2(∆xi−1 + ∆xi), ∆xi. As a result, R is
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Table 1. S&P500 VOLATILITY 07/11/2019, Spot: 3085.18

Maturity(days) t1/2 43 253 407 561 771 1107 1499
ZeroRate 0.01708 0.01708 0.01795 0.01727 0.01685 0.01633 0.01604 0.01592
DividendRate 0.01510 0.01510 0.01648 0.01668 0.01645 0.01626 0.01627 0.01633

0.50 0.2317 0.1907 0.2911 0.4329 0.3197 0.3036 0.2497 0.2162
0.55 0.2317 0.1907 0.2911 0.2787 0.2956 0.2232 0.1809 0.1581
0.60 0.2317 0.1907 0.2727 0.2759 0.2301 0.1681 0.1372 0.1227
0.65 0.2317 0.2561 0.2450 0.2148 0.1706 0.1340 0.1122 0.1038
0.70 0.3368 0.1744 0.1780 0.1560 0.1302 0.1116 0.0991 0.0952
0.75 0.4035 0.1216 0.1277 0.1164 0.1057 0.0720 0.0955 0.0922
0.80 0.2224 0.0976 0.1010 0.0964 0.0948 0.0866 0.0959 0.1027
0.85 0.1407 0.0931 0.0934 0.0917 0.0933 0.0980 0.0968 0.1032
0.90 0.0993 0.0972 0.0938 0.0937 0.0957 0.1134 0.0985 0.0972
0.95 0.0500 0.0967 0.0962 0.0965 0.0983 0.0966 0.1007 0.0930
1.00 0.0500 0.0970 0.0973 0.0978 0.0995 0.0879 0.1014 0.1004
1.05 0.0507 0.0974 0.0964 0.0974 0.0983 0.0999 0.0996 0.1060
1.10 0.1051 0.0974 0.0948 0.0951 0.0944 0.1029 0.0959 0.0962
1.15 0.1696 0.1004 0.0953 0.0919 0.0930 0.0978 0.0912 0.0986
1.20 0.0936 0.1086 0.1021 0.0960 0.0967 0.0955 0.0948 0.0982
1.25 0.4045 0.1228 0.1188 0.1092 0.1051 0.0986 0.0995 0.0971
1.30 0.1954 0.1429 0.1404 0.1266 0.1159 0.1034 0.1055 0.0972
1.35 0.4301 0.1683 0.1660 0.1476 0.1298 0.1106 0.1129 0.0992
1.40 0.4656 0.1981 0.1948 0.1718 0.1468 0.1202 0.1216 0.1034
1.45 0.1440 0.2297 0.2253 0.1987 0.1670 0.1324 0.1318 0.1096
1.50 0.0968 0.2586 0.2553 0.2269 0.1897 0.1471 0.1434 0.1179

Table 2. Call Option Price from Implied Volatility and Local
Volatility, S&P500, 7/11/2019

Moneyness t1 = 0.1175 IV, LV t2 = 0.691 IV, LV t3 = 1.112 IV, LV t4 = 1.533 IV, LV t5 = 2.107 IV, LV t6 = 3.025 IV, LV t7 = 4.096 IV, LV

0.500 49.484 49.484 49.113 49.113 48.786 48.786 48.324 48.325 47.567 47.568 46.688 46.691 45.845 45.852
0.525 47.015 47.015 46.661 46.661 46.349 46.349 45.909 45.909 45.185 45.187 44.348 44.352 43.546 43.556
0.550 44.546 44.546 44.208 44.208 43.913 43.913 43.493 43.494 42.804 42.807 42.009 42.015 41.252 41.264
0.575 42.076 42.076 41.756 41.756 41.477 41.477 41.078 41.079 40.424 40.428 39.675 39.682 38.966 38.979
0.600 39.607 39.607 39.304 39.304 39.041 39.041 38.663 38.665 38.046 38.051 37.346 37.355 36.692 36.705
0.625 37.138 37.138 36.851 36.851 36.604 36.605 36.249 36.252 35.673 35.677 35.029 35.038 34.436 34.448
0.650 34.669 34.669 34.399 34.399 34.169 34.170 33.836 33.841 33.306 33.309 32.727 32.736 32.203 32.213
0.675 32.200 32.200 31.946 31.947 31.734 31.736 31.428 31.434 30.952 30.951 30.449 30.456 30.003 30.011
0.700 29.731 29.731 29.495 29.495 29.301 29.305 29.027 29.035 28.617 28.610 28.203 28.207 27.844 27.850
0.725 27.261 27.261 27.044 27.045 26.874 26.879 26.641 26.648 26.311 26.297 25.998 26.000 25.735 25.742
0.750 24.793 24.793 24.597 24.599 24.458 24.463 24.277 24.284 24.046 24.029 23.848 23.846 23.687 23.695
0.775 22.325 22.325 22.160 22.161 22.063 22.067 21.950 21.953 21.834 21.820 21.762 21.759 21.708 21.720
0.800 19.862 19.862 19.740 19.741 19.702 19.703 19.675 19.675 19.691 19.685 19.753 19.750 19.809 19.823
0.825 17.410 17.410 17.356 17.356 17.394 17.393 17.470 17.468 17.631 17.637 17.832 17.831 17.998 18.012
0.850 14.986 14.986 15.030 15.028 15.165 15.161 15.358 15.354 15.670 15.687 16.009 16.011 16.280 16.294
0.875 12.617 12.617 12.793 12.791 13.041 13.036 13.358 13.355 13.822 13.845 14.293 14.299 14.663 14.675
0.900 10.348 10.347 10.683 10.681 11.050 11.046 11.490 11.491 12.098 12.121 12.690 12.700 13.151 13.161
0.925 8.231 8.231 8.736 8.736 9.217 9.217 9.770 9.775 10.506 10.524 11.205 11.217 11.744 11.753
0.950 6.326 6.326 6.986 6.988 7.564 7.568 8.211 8.220 9.053 9.062 9.839 9.853 10.445 10.453
0.975 4.681 4.682 5.456 5.460 6.104 6.110 6.820 6.830 7.740 7.741 8.594 8.606 9.252 9.261
1.000 3.327 3.328 4.159 4.162 4.842 4.850 5.598 5.607 6.566 6.561 7.467 7.475 8.163 8.174
1.025 2.267 2.267 3.092 3.093 3.776 3.781 4.540 4.546 5.529 5.519 6.454 6.458 7.175 7.187
1.050 1.479 1.479 2.242 2.241 2.894 2.896 3.640 3.640 4.621 4.611 5.551 5.549 6.283 6.296
1.075 0.924 0.924 1.585 1.582 2.181 2.179 2.885 2.880 3.834 3.826 4.752 4.743 5.483 5.495
1.100 0.552 0.552 1.094 1.090 1.616 1.610 2.261 2.252 3.159 3.154 4.048 4.036 4.768 4.779
1.125 0.316 0.316 0.737 0.733 1.179 1.170 1.753 1.742 2.585 2.584 3.434 3.419 4.133 4.142
1.150 0.174 0.174 0.485 0.483 0.846 0.838 1.344 1.335 2.102 2.104 2.900 2.885 3.571 3.579
1.175 0.092 0.092 0.312 0.312 0.598 0.593 1.021 1.015 1.698 1.703 2.439 2.427 3.077 3.083
1.200 0.046 0.046 0.196 0.199 0.416 0.416 0.768 0.767 1.364 1.372 2.043 2.038 2.643 2.648
1.225 0.023 0.023 0.121 0.126 0.286 0.291 0.572 0.578 1.089 1.099 1.705 1.707 2.264 2.269
1.250 0.011 0.011 0.073 0.079 0.194 0.203 0.422 0.434 0.864 0.878 1.418 1.429 1.935 1.941
1.275 0.005 0.005 0.043 0.050 0.129 0.142 0.309 0.326 0.683 0.699 1.175 1.196 1.649 1.657
1.300 0.002 0.002 0.025 0.032 0.085 0.100 0.224 0.246 0.536 0.555 0.970 1.002 1.402 1.414
1.325 0.001 0.001 0.014 0.020 0.056 0.071 0.161 0.185 0.419 0.440 0.799 0.839 1.190 1.205
1.350 0.000 0.000 0.008 0.013 0.036 0.050 0.115 0.140 0.326 0.350 0.656 0.704 1.007 1.027
1.375 0.000 0.000 0.004 0.009 0.023 0.036 0.082 0.107 0.253 0.278 0.537 0.592 0.851 0.876
1.400 0.000 0.000 0.002 0.006 0.014 0.026 0.058 0.081 0.195 0.221 0.438 0.498 0.718 0.747
1.425 0.000 0.000 0.001 0.004 0.009 0.019 0.040 0.062 0.150 0.176 0.357 0.420 0.604 0.638
1.450 0.000 0.000 0.001 0.003 0.006 0.014 0.028 0.048 0.115 0.141 0.290 0.356 0.508 0.546
1.475 0.000 0.000 0.000 0.002 0.003 0.010 0.019 0.037 0.088 0.114 0.235 0.301 0.426 0.468
1.500 0.000 0.000 0.000 0.001 0.002 0.008 0.013 0.029 0.067 0.092 0.190 0.256 0.357 0.403

strictly diagonally dominant.6 The n × n matrix Q> is tridiagonal, and its
i = 2, . . . , N − 1 rows are 1

∆xi−1
, − 1

∆xi−1
− 1

∆xi
, 1

∆xi
, and the other elements

of R,Q are zeros.

6As clear from the expression, in this case, R is strictly positive definite and the matrix

equation (24) has a unique solution c.
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Figure 2. Calibrated Arrow-Debreu Prices S&P500, Date: 07/11/2019
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Figure 3. Reconstruction of Call Option Price

The smoothing spline method is a spline approximation that has a penalty
term and allows some observational errors. The general form of the penalty is
to minimize the summation of the square of second derivatives over the whole
range and the spline function by a natural cubic spline:

(25) J(f) = p

n∑

i=1

[wi(yi − C(xi))]
2

+ (1− p)
∫ xN

x1

(C ′′(x))
2
dx,

where yi = g(xi) + εi for a smooth function g at data x1, . . . , xN , and 1
wi

is

the standard deviation in yi for estimation errors εi, and λ = 1−p
p is called
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the roughness of the penalty. Since C ′′(x) is a linear function, the integral is
calculated using Simpson’s rule,

(26)

∫ xN

x1

(C ′′(x))
2
dx =

4

3

n−1∑

i=1

∆xi
(
c2i + cici+1 + c2i+1

)
=

2

3
c>Rc.

Now, we construct the quadratic programming problem to find a. From
(24), we can express c using a,

(27) c = 3
(
R\Q>

)
a =: 3Sa,

where S = R\Q> and the backslash operator “\” implies solving the matrix
equation RS = Q> without using the inverse and ignoring the first and last
rows of the n × n matrix S, which are all 0. The integral part is 2

3c
>Rc =

6S>RS = 6M , where M = S>RS. Then, (25) can be transformed to the
matrix form:

(28) J(f)/p = a> (W + 6λM)a− 2y>Wa+ y>Wy,

where W is the diagonal matrix with elements w1, . . . , wN . Since the last term
is constant, the first two terms are the objective functions of the minimiza-
tion problem. Because at knots x1, . . . , xN−1, the value, the first and second
derivatives of C(x), must be the same by the left and right segments,

bi =
1

∆xi
(ai+1 − ai)−

∆xi
3

(2ci + ci+1),

di =
1

3∆xi
(ci+1 − ci), i = 1, . . . , N − 1.

(29)

At xN ,

bN = C ′(xN ) = lim
x→xN−

C ′(xN )

=
1

∆xN−1
(aN − aN−1) +

∆xN−1

3
(2cN + cN−1),

and additional assumption of dN = 0. In a matrix form, we have

(30) c = 3Sa, b = Ba, d = Da,

where B = B1 − B2S, D = B1S. The matrices B1 and B2 are the n × n
matrixes whose (i, i), (i, i + 1)-th elements are (− 1

∆xi
, 1

∆xi
), (2∆xi,∆xi), i =

1, . . . , N − 1, and 0 elsewhere.
Discounted Density Function Condition (12b). Since the second-order differ-
entiation of the cubic spline function C is a piecewise linear function, by the
trapezoidal quadrature we have

(31)

∫ xN

x1

C ′′(x)dx = 2F>c = 6F>Sa = df,

where F = 1
2

(
∆x1, (∆x1 + ∆x2), . . . , (∆xN−2 + ∆xN−1),∆xN−1

)>
and

C ′′(xi) = 2ci, i = 1, . . . , N .
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Forward Risk Neutrality Condition. The risk-neutral assumption of model (1)
is simply

(32) E[XT ] =

∫ xN

x1

xC ′′(x)dx = df R = dq,

where XT is the random variable with probability density function P (x, T ) for
given maturity T > 0 and forwarding factor R = R(0, T ) is defined as

(33) R(T1, T2) = dq(T1, T2)/df(T1, T2)

for brevity, where df(T ) = df(0, T ), dq(T ) = dq(0, T ), R(T ) = R(0, T ). Since
∫ xi+1

xi

xC ′′(x)dx =

∫ xi+1

xi

x(2ci + 6di(x− xi))dx

= (x2
i+1 − x2

i )ci + (2x3
i+1 + x3

i − 3xix
2
i+1)di

and c = 3Sa,d = Da, the equation (32) becomes
∫ xN

x1

xC ′′(x)dx = (x2
2 − x2

1, . . . , x
2
N − x2

N−1, 0) · c

+ (2x3
2 + x3

1 − 3x1x
2
2, . . . , 2x

3
N + x3

N−1 − 3xN−1x
2
N , 0) · d

= G>a = dfR = dq,(34)

where G is an n dimensional vector.
Optional Constraint for the Volatility Smile. In a market with evident volatil-
ity smile, the risk-neutral implied distribution shows a monotone increase and
monotone decrease centering on the forward price. However, depending on
the optimization method and specific solvers, the computed implied distribu-
tion can have much whipsaws, especially for quadratic optimization. These
whipsaws can be reduced by allowing negligible numerical errors. In this case,
artificial monotone conditions can be imposed. Considering this environmental
situation of practitioners, the following are described as optional conditions.
Since
∫ xN

x1

(x−R)C ′′(x)dx =

∫ R

x1

(x−R)C ′′(x)dx+

∫ xN

R

(x−R)C ′′(x)dx = 0

and C ′′ > 0, constraint (32) has the same role that discounted implied distribu-
tion C ′′ has in the area left and right of R. From this point of view, we can add
artificial monotonic conditions to C ′′, where C ′′ increases monotonically before
R and decreases monotonically after R. This does not affect the accuracy of
the recovering power of C ′′ when a volatility smile is present. This condition
dramatically reduces the whipsaw and peak of C ′′ at the knots.7

7This condition, which has smoothing effects on the distribution, is very important for a

feasible calculation of local volatilities from the call option prices or implied distribution C′′

itself. More specifically, in [2] use implied distribution as the building block in their FDM

and in [3] use call option prices as their finite difference.
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We describe this as cumulative distribution. Consider the first-order deriva-
tives of C at xi,

(35) C ′(xi)− C ′(0) =

∫ xi

0

C ′′(x)dx = df · cdf(xi), i = 1, . . . , N.

Since C ′(0) = −df for this relation, the cumulative distribution function satis-
fies cdf(x) = C ′(x)/df + 1. The inflection point of cdf(x) is the point of sign
changes for the second derivatives of C ′(x)/df + 1, which equals C ′′′(x).

(36)

∂3C

∂x3

∣∣∣
xi

≥ 0, i = 1, . . . , l,

∂3C

∂x3

∣∣∣
xi

< 0, i = l + 1, . . . , N,

where |xl−R| < |xi−R|, l 6= i, i = 1, . . . , N . For maturity T , df = df(T ), R =
R(T ).
Linear Programming for Implied Distributions. We can obtain a series of cubic
spline coefficients that is used to recover the call option price curves as well as
implied distributions. The call option price is represented as an integration of
the product of its payoff and the Arrow-Debreu prices (discounted distribution
function), both of which are piecewise linear functions, and calculated using
Simpson’s rule for polynomials of order 2. Based on this, we construct a more
direct optimization problem for distribution C ′′. This is the final step to find
the implied distributions. This gives a call option price as a summation of the
product of its payoff and discounted probability distribution at knot points,
both of which are linear. We obtain series of probability density functions
each of which recovers call option prices for the given maturity and satisfies no
arbitrage constraints under `1 minimization scheme.

Theorem A.1 (`1-Minimization for Arrow-Debreu Prices). There exists a
linear programming problem for the construction of the Arrow-Debreu prices
C ′′j (x) for each tj , j = 1/2, 1, . . . ,m, based on the cubic spline approximation
of the call option prices.

Proof. Step 1: Call option price vector as a function of C ′′j (x):

C(xk, tj) =

∫ xN

x1

max(x− xk, 0)C ′′(x)dx

=
n−1∑

i=k

∫ xi+1

xi

(x− xk)l(x | 2ci, 2ci+1)dx→ Pi(x) := (x− xk)l(x | 2ci, 2ci+1)

=
n−1∑

i=k

xi+1 − xi
6

[
Pi(xi) + 4Pi

(
xi+1 + xi

2

)
+ Pi(xi+1)

]
→ Simpson’s rule

=
n−1∑

i=max(k,2)

1

3

[
−x2

i−1 + x2
i+1 − xi−1xi + xixi+1 + xi−1xk − xi+1xk

]
ci,(37)
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where k = 1, . . . , N − 1, and l(x | 2ci, 2ci+1) is a linear segment connecting
(xi, 2ci) to (xi+1, 2ci+1). In a matrix form, we have 1

3Cc = CSa = call, where
S in (27), call is the call option price vector with k−th element call(xk, tj)
and C is the (n− 1)× n matrix whose (k, i) element is the underlined term in
(37).

Step 2: `1-minimization problem for C ′′j (x).

Here, the objective function is

min
a

n∑

i=1

|wi(yi − (CSa)i)| ,

where (CSa)i indicates the i-th element of vector CSa. By introducing the
new slack variables zi = |wi(yi − (CSa)i)|, i = 1, . . . , N−1, we can change this
into a linear programming problem (38), without loss of generality, assuming
that wi = 1, we have

min
a

(
n−1∑

i=1

zi = [0,1] ·
[
a
z

])
,

(38)

s.t. − zi ≤ 0,

− (CSa)i − zi ≤ −yi,
+ (CSa)i − zi ≤ +yi, i = 1, . . . , N − 1,

Cj(xi) ≥ 0,

∂Cj
∂x

∣∣∣
xi

≤ 0 −→ (11a),

∂2Cj
∂x2

∣∣∣
xi

≥ 0 i = 1, . . . , N,−→ (11b),

∫ xN

x1

C ′′j (x)dx = df −→ (31),

∫ xN

x1

xC ′′j (x)dx = dq −→ (32),

λj = 0 for tj < tshort, or using optional constraint

optional constraint for volatility smile:
[
∂3Cj
∂x3

∣∣∣
xi

≥ 0, i = 1, . . . , l,
∂3Cj
∂x3

∣∣∣
xi

≤ 0, i = l + 1, . . . , N

]
−→ (36),

where the time 0 call option price is C0(x) = max(1 − x, 0) and index l =

argmin
i
|xi − Rj |, Rj = R(0, tj). Since

∂3Cj

∂x3 = 6di at x = xi, i = 1, . . . , N for

each tj , the last two condition can be expressed as D1a ≥ 0 and D2a < 0,
where D1 is a sub matrix of D consisting of rows 1 to l, and D2 is made up of
the remaining rows. �
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