• Title/Summary/Keyword: Fume

Search Result 793, Processing Time 0.041 seconds

Mechanical Properties and Economic Evaluation of Steel Fiber Reinforced Shotcrete (강섬유보강숏크리트의 역학적 특성 및 경제성 평가)

  • 손영현;박우진
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.122-129
    • /
    • 1998
  • A field experiment was performed to analyze the properties of SFRS(steel fiber reinforced shotcrete) against WMRS(wire mesh reinforced shotcrete) with some experimental parameters. The parameters were reinforcing methods(steel fiber and wire mesh), steel fiber contents(0.5%, 0.75%, and 1.0%), silica fume contents(0.0% and 10.0%), spraying thicknesses of layer(10㎝, 8㎝, and 6㎝), and spraying parts(side wall, shoulder, and crown). According to the analyzed results, the mechanical properties of SFRS such as compressive strength, flexural strength, and load-carrying capacity after cracks were improved. And the economic evaluation was also performed on the basis of the required thickness of the layer and other researcher's results for rebound ratios. From the results of this tests, it is found that the traditional WMRS may be substituted by the SFRS in the viewpoint of the economic evaluation as well as the mechanical properties. In additions, the silica fume, even if it is very expensive, can significantly improve the mechanical properties of the shotcrete regardless of mixing with or without the steel fiber.

  • PDF

Predicting the compressive strength of cement mortars containing FA and SF by MLPNN

  • Kocak, Yilmaz;Gulbandilar, Eyyup;Akcay, Muammer
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.759-770
    • /
    • 2015
  • In this study, a multi-layer perceptron neural network (MLPNN) prediction model for compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an output parameter which is compressive strength of cement mortars. In the model, the training and testing results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 90 days compressive strength of cement mortars.

A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach

  • Chari, Mehdi Nemati;Shekarchi, Mohammad;Ghods, Pouria;Moradian, Masoud
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.367-388
    • /
    • 2016
  • In this paper, a simple practical method is introduced in which a simple weight measurement of concrete and finite element numerical analysis are used to determine the moisture transfer coefficient of concrete with a satisfactory accuracy. Six concrete mixtures with different water-to-cementitious material (w/cm) ratios and two pozzolanic materials including silica fume and zeolite were examined to validate the proposed method. The comparison between the distribution of the moisture content obtained from the model and the one from the experimental data during both the wetting and drying process properly validated the performance of the method.With the proposed method, it was also shown that the concrete moisture transfer coefficient considerably depends on the pore water saturation degree. The use of pozzolanic materials and also lowering w/cm ratio increased the moisture transfer coefficient during the initial sorption, and then, it significantly decreased with an increase in the water saturation degree.

Strength and durability studies on high strength concrete using ceramic waste powder

  • Karthikeyan, B.;Dhinakaran, G.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.171-181
    • /
    • 2017
  • This paper summarizes the study on effect of ceramic waste powder as partial substitute to cement in binary blend and along with silica fume in ternary blend high strength concrete in normal and aggressive environments. Strength parameters such as compression & tension and durability indices such as corrosion measurement, deterioration, water absorption and porosity were studied. Ceramic waste powder was used in three different percentages namely 5, 10 and 15 with constant percentage of silica fume (1%) as substitutes to cement in ternary blend high strength concrete was investigated. After a detailed investigation, it was understood that concrete with 15% ceramic waste powder registered maximum performance. Increase of ceramic waste powder offered better resistance to deterioration of concrete.

Permeability of Jet Set Cement Concrete with Mineral Admixtures (광물질 혼화재를 혼입한 초속경시멘트 콘크리트의 투수 특성)

  • Won, Jong-Pil;Kong, Tae-Woong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.41-48
    • /
    • 2005
  • The purpose of this study is to improve the performance of jet set cement, which mixed with the mineral admixtures such as silica fume, fly ash and ground granulated blast furnace slag. First, the test of mortar according to the substitute ratio of mineral admixtures were evaluated. And then using it obtained from test results, it was conducted with experiment of mechanical, physical and permeable characteristics of concrete. Laboratory test results showed that concrete substituted for $5\%$ of silica fume didn't have an effect on prominent performance relating to compressive strength. However it was superior to concrete in case of resistance of chloride permeation.

A Study on the Properties of Fiber Reinforced Porous Concrete for Pavement using Industrial By-product (산업부산물을 이용한 섬유보강 포장용 포러스콘크리트의 특성에 관한 연구)

  • Park Seong Bum;Lee Yoon Sun;Lee Jun;Jang Young Il;Kim Bong Kyun;Kim Jeong Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.699-702
    • /
    • 2005
  • This study evaluates the properties of porous concrete for pavement according to content of silica fume and steel fiber. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of KNHC as for every factor of mixture but in the case of the flexural strength, more than $0.6vol.\%$ of steel fiber satisfied the JCI proposition values. The case when silica fume and steel fiber are used simultaneously presents the strongest durability and Noise Reduction Coefficient is 0.48 to prove that it possesses almost $50\%$ sound absorption.

  • PDF

Effects of Sand/Binder Ratios on the Mechanical Properties of Mortars Containing Fly ash and Silica fume

  • Park, Ki-Bong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • The paper presents details of an investigation into the effect of sand content upon the strength and shrinkage of mortar. This strategy was to produces more durable strength mortar with less cement. Cement mortars containing $20\;wt.\;\%$ Class F fly ash, and/or $6\;wt.\;\%$ silica fume were prepared at a water/binder ratio of 0.45 and sand/binder ratios of 2.0, 2.5, 2.7, and 3.0. The increase in sand/binder ratio caused a decrease in the mortar flow. However, the sand/binder ratio did not affect the strength development. Drying shrinkage decreased with increasing the sand contents.

  • PDF

A Experimental Study on the High Performance Concrete for Bridge Decks (고성능 콘크리트의 교량 바닥판 적용을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Cheong, Hai-Moon;Ku, Bon-Sung;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.53-56
    • /
    • 2006
  • To develop more durable concrete deck, performance characteristic test of HPC(High Performance Concrete) mixtures was carried out. The parameters used in this project were ; the mineral admixture details were 4 types such as ordinary portland cement(OPC), 20% fly ash (FA), 20% fly ash and 4% silica fume(FS), and 40% ground granulated blast-furnace slag(BS). Their design compressive strengths were 27MPa and 35MPa respectively. The results showed the compressive strength of concrete did not much affect the durability of concrete. HPC with blast-furnace slag(BS) showed the good durability but was prone to crack. HPC with fly ash(FA) or with fly ash and silica fume(FS) had the good durability and crack resistance.

  • PDF

Resistance Estimates of Cement Mortars Using Crushed Sand Under Chemical Attacks (화학적 침해를 받는 부순모래를 사용한 시멘트 모르타르의 저항성 평가에 관한 연구)

  • Kim, Myung-Sik;Jang, Hui-Suk;Beak, Dong-Il;Bang, Kwang-Won;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.577-580
    • /
    • 2006
  • As this study is to estimate resistance of cement mortars using crushed sand under chemical attacks. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of silica fume and fly ash(up to 15% and 50% by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days, 60days, 90days and 180days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of silica fume and fly ash was performed.

  • PDF

The Analysis about Economical Composition in Ultra High Strength Fiber Reinforced Concrete (경제성을 고려한 초고강도 강섬유보강 콘크리트의 구성인자 분석)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Kyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.33-36
    • /
    • 2006
  • In manufacturing Ultra high strength fiber reinforced concrete(UHSFRC), steel fiber, super-plasticizer and silica fume are important but they are imported materials therefore very expensive. consequently it is necessary to find substitutes of them or to develop producing techniques in order to manufacture UHSFRC economically. In this study, we investigated if it was possible to substitute blast-furnace slag instead of silica fume and steel fiber of home manufacture instead of one of overseas manufacture.

  • PDF