• Title/Summary/Keyword: Fume

Search Result 793, Processing Time 0.025 seconds

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete

  • Muhammad, Akbar;Zahoor, Hussain;Pan, Huali;Muhammad, Imran;Blessen Skariah, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.275-287
    • /
    • 2023
  • The use of environmental-friendly building materials is becoming increasingly popular worldwide. Compared to the normal concrete, rubber-based concrete is considered more durable, environmentally friendly, socially and economically viable. In this investigation, M20 grade concrete was designed and the fine aggregates were replaced with crumb rubber of two different micron sizes (0.221 mm and 0.350 mm). Fly ash (FA) and silica fume (SF) replaces the binder as supplementary cementitious materials at a rate of 0, 5, 10, 15, and 20% by weight. The mechanical properties of concrete including compressive strength, tensile, and flexural strength were determined. The polynomial work expectation validates the response surface approach (RSM) concept for optimizing SF and FA substitution. The maximum compressive strength (22.53 MPa) can be observed for the concrete containing 10% crumb rubber, 15% fly ash and 15% silica fume. The reduced unit weight of the rubberized concrete may be attributed to the lower specific gravity of the rubber particles. Two-way ANOVA with a significance criterion of less than 0.001 has been utilized with modest residual error from the lack of fit and the pure error. The predictive model accurately forecasts the variable-response relationship. Since, the crumb rubber is obtained from wasted tires incorporating FA and SF as a cementitious ingredient, it helps to significantly improve mechanical properties of concrete and reduce environmental degradation.

The Non-Destructive Determination of Heavy Metals in Welding Fume by EDXRF (EDXRF에 의한 용접흄 중의 중금속의 비파괴 정량)

  • Park, Seunghyun;Jeong, Jee Yeon;Ryoo, Jang Jin;Lee, Naroo;Yu, Il Je;Song, Kyung Seuk;Lee, Yong Hag;Han, Jeong Hee;Kim, Sung Jin;Park, Jung sun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.229-234
    • /
    • 2001
  • The EDXRF(Energy Dispersive X-ray Fluorescence Spectrometer) technique was applied to the determination of heavy metals in welding fume. The EDXRF method designed in this study was a non-destructive analysis method. Samples were analyzed directly by EDXRF without any pre-treatment such as digestion and dilution. The samples used to evaluate this method were laboratory samples exposed in a chamber connected with a welding fume generator. The samples were first analyzed using a non-destructive EDXRF method. The samples subsequently were analyzed using AAS method to verify accuray of the EDXRF method. The purpose of this study was to evaluate the possibility of the non-destructive analysis of heavy metals in welding fume by EDXRF. The results of this study were as follow: 1.When the samples were collected under the open-face sampling condition, a surface distribution of welding fume particles on sample filters was uniform, which made non-destructive analysis possible. 2. The method was statistically evaluated according to the NIOSH(National Institute for Occupational Safety and Health) and HSE(Health and Safety Executive) method. 3. The overall precision of the EDXRF method Was calculated at 3.45 % for Cr, 2.57 % for Fe and 3.78 % for Mn as relative standard deviation(RSD), respectively. The limits of detection were calculated at $0.46{\mu}g$/sample for Cr, $0.20{\mu}g$/sample for Fe and $1.14{\mu}g$/sample for Mn, respectively. 4. A comparison between the results of Cr, Fe, Mn analyzed by EDXRF and AAS was made in order to assess the accuracy of EDXRF method. The correlation coefficient between the results of EDXRF and AAS was 0.9985 for Cr, 0.9995 for Fe and 0.9982 for Mn, respectively. The overall uncertainty was determined to be ${\pm}12.31%$, 8.64 % and 11.91 % for Cr, Fe and Mn, respectively. In conclusion, this study showed that Cr, Fe, Mn in welding fume were successfully analyzed by the EDXRF without any sample pre-treatment such as digestion and dilution and a good correlation between the results of EDXRF and AAS was obtained. It was thus possible to use the EDXRF technique as an analysis method of working environment samples. The EDXRF method was an efficient method in a non-destructive analysis of heavy metals in welding fume.

  • PDF

Alkali-Silica Reaction of Crushed Stones

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.63-70
    • /
    • 2006
  • This study tested the alkali-silica reactivity of various types of crushed stones, following the specifications of ASTM C 227 and C 1260, and the results obtained from the tests were compared. This study also analyzed the effects of particle size and grading of reactive aggregate based on the expansion of mortar-bar due to an alkali-silica. The effect of mineral admixtures to reduce the detrimental expansion caused by the alkali-silica reaction was investigated based on the method specified by ASTM C 1260. The mineral admixtures used in this study were fly ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and 35% were uniformly applied to all the mineral admixtures, and the replacement ratios of 45 and 55% were additionally applied for the admixtures that could sustain the workability at these ratios. The results indicate that replacement ratios of 25% for fly ash, 10% for silica fume, 25% for metakaolin and 35% for ground granulated blast furnace slag were the most effective in reducing the expansion due to the alkali-silica reaction under the experimental conditions of this study.

A Study on the Development of Water-Permeable Concretes for Overlay (오버레이용 투수성 콘크리트의 개발에 관한 연구)

  • 은재기;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.223-226
    • /
    • 1999
  • The purpose of this study is no examine the combination effect on strength preperties of water-permeable concretes mixed with redispersible polymer, silica fume and polypropylene fibers for overlay in pavement. The water-permeable concrete with a water-cement ration of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and polypropylene fiver contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. It is concluded concretes are obtained at a polypropylene fiber content of 1.0% and a silica fume content of 10% with a void filling ratio of 50%. And the water-permeable concretes with a flexural strength of 14.1~28.0kgf/$\textrm{cm}^2$, a compressive strength of 71.2~128.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.22~2.52cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concretes having flexural strength of 24.9~57.9kgf/$\textrm{cm}^2$, a compressive strength of 83.8~268.5kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.24~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proportioning factors.

  • PDF

Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement

  • Katkhuda, Hasan N.;Shatarat, Nasim K.;Hyari, Khaled H.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.357-364
    • /
    • 2017
  • This paper presents the results of a study that investigated the improvement of the mechanical properties of coarse and fine recycled asphalt pavement (RAP) produced by adding silica fume (SF) with contents of 5%, 10%, and 15% by total weight of the cement. The coarse and fine natural aggregate (NA) were replaced by RAP with replacement ratio of 20%, 40% and 60% by the total weight of NA. In addition, SF was added to NA concrete mixes as a control for comparison. Twenty eight mixes were produced and tested for compressive, splitting tensile and flexural strength at the age of 28 days. The results show that the mechanical properties decrease with as the content of RAP increases. And the decrease in the compressive strength was more in the fine RAP mixes compared to the coarse RAP mixes, while the decrease in the splitting tensile and flexural strength was almost the same in both mixes. Furthermore, using SF enhances the mechanical properties of RAP mixes where the optimum content of SF was found to be 10%, and the mechanical properties enhancement of coarse RAP were better than fine RAP mixes. Accordingly, the RAP has the potential to be used in the concrete pavements or in other low strength construction applications in order to reduce the negative impact of RAP on the environment and human health.

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume (가연성 배기덕트-흄 화재위험성 평가에 관한 연구)

  • Yoon, Yeo-Song;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

Exposure Evaluation to Total Welding Fume and Manganese at Technical High Schools in Choong-Nam Area (충청지역 일부 공업고등학교 실습생의 용접흄 및 망간에 대한 노출 평가)

  • 이종화;장지선;박종안;장보기
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.4
    • /
    • pp.51-62
    • /
    • 2001
  • Geometric mean of airborne welding fume concentration at technical high schools was 4.80mg/㎥)N.D~35.39 mg/ ㎥ and the percentage of samples exceeded TLV of the Korean ministry of labor was 43.6%, Geometric mean of airborne Mn concentration was 0.06 mg/㎥(N.D~0.42mg/㎥) and the percentage of samples exceeded TLV of ACGIH was 15.4 % In case of airborne Me concentration, there is a significant difference among schools (p<0.05) Mn concentrations in blood of the exposed and control groups were 1.84$\mu\textrm{g}$/dl and 1.91 mg/dl respectively. Mn concentrations in urine of the exposed and control groups were 1.36$\mu\textrm{g}$/ιand 0.57$\mu\textrm{g}$/ι respectively. In case of Mn concentrations in urine there is a significant difference between both groups(P<0.001) and among schools(p<0.05) Mn concentrations in blood and urine of exposed group were not over BEIs of the Korean ministry of labor. Mn levels in blood and urine were not significantly affected by smoking, drinking and residence, There was no correlation between Mn concentration in air and blood but there was a statistically significant correlation between Mn concentration in air urine(r=0.323). There was no a statistically significant correlation between Mn concentration in blood and urine.

  • PDF

A Study on the Improvements of Strengths of Water-Permeable Concrete (투수성 콘크리트의 강도개선에 관한 연구)

  • 은재기;이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.307-312
    • /
    • 1999
  • The purpose of this study is to ascertain the strength properties of water-permeable concrete with redispersible polymer powder, silica fume and polypropylene fibers. The water-permeable concrete using rediapersibel polymer powder with a water-cement ratio of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and fiber contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. From the test results, improvements in the strength properties of the water-permeable concrete due to the addition of the redispersible polymer powder, silica fume and fibers are discussed. It is concluded from the test results that the superior flexural and compressive strengths of water-permeable concretes are obtained at a propylene fiber content of 1.0% with a void filling ratio of 50%. And, the water-permeable concrete having a flexural strength of 15.6~28.4kgf/$\textrm{cm}^2$, a compressive strength of 63.5~120.6kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.14~1.70cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concrete having a flexural strength of 35.6~57.9kgf/$\textrm{cm}^2$, a compressive strength of 164.0~290.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.19~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proprotioning factors.

  • PDF