Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.6.479

Experimental study of graphene oxide on wollastonite induced cement mortar  

Sairam, V. (School of Civil Engineering, Vellore Institute of Technology)
Shanmugapriya, T. (School of Civil Engineering, Vellore Institute of Technology)
Jain, Chetan (School of Civil Engineering, Vellore Institute of Technology)
Agrahari, Himanshu Kumar (School of Civil Engineering, Vellore Institute of Technology)
Malpani, Tanmay (School of Civil Engineering, Vellore Institute of Technology)
Publication Information
Advances in concrete construction / v.12, no.6, 2021 , pp. 479-490 More about this Journal
Abstract
Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.
Keywords
graphene oxide dispersion; mechanical properties; microstructural characteristics; silica fume; wollastonite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ma, Y., Zhu, B., Tan, M. and Wu, K. (2004), "Effect of Y type polypropylene fiber on plastic shrinkage cracking of cement mortar", Mater. Struct., 37(2), 92-95. https://doi.org/10.1007/BF02486604.   DOI
2 Mathur, R., Misra, A.K. and Goel, P. (2007), "Influence of wollastonite on mechanical properties of concrete", J. Sci. Res., 66, 1029-1034.
3 Mohammed, A., Sanjayan, J.G., Duan, W.H and Nazari, A. (2015), "Incorporating graphene oxide in cement composites: A study of transport properties", Constr. Build. Mater., 84, 341-347. https://doi.org/10.1016/j.conbuildmat.2015.01.083.   DOI
4 O z, H.O . and Gunes, M. (2021), "The effects of synthetic wollastonite developed with calcite and quartz on high performance mortars", Struct. Concrete, 22, E257-E272. https://doi.org/10.1002/suco.201900520.   DOI
5 Gu, Y., Xia, K., Wei, Z., Jiang, L., She, W. and Lyu, K. (2020), "Synthesis of nanoSiO2@ graphene-oxide core-shell nanoparticles and its influence on mechanical properties of cementitious materials", Constr. Build. Mater., 236, 117619. https://doi.org/10.1016/j.conbuildmat.2019.117619.   DOI
6 Hou, D. (2020), Molecular Dynamics Study on Cement-Graphene Nanocomposite, Molecular Simulation on Cement-Based Materials, Springer, Singapore.
7 IS 383 (2016), Indian Standards Specification for Coarse and Fine Aggregate from Natural Source for Concrete, Bureau of Indian Standards, New Delhi.
8 IS 4031-6 (1988), Indian Standards Specification for Methods of Physical Tests for Hydraulic Cement, Bureau of Indian Standards, New Delhi.
9 Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.   DOI
10 Gao, X., Zhang A., Li S., Sun B. and Zhang, L. (2016), "The resistance to high temperature of magnesia phosphate cement paste containing wollastonite", Mater. Struct., 49(8), 3423-3434. https://doi.org/10.1617/s11527-015-0729-9.   DOI
11 Ghahari, S.A., Ghafari, E. and Assi, L. (2018), "Pore structure of cementitious material enhanced by graphitic nanomaterial: A critical review", Front. Struct. Civ. Eng., 12(1), 137-147. https://doi.org/10.1007/s11709-017-0431-9.   DOI
12 Mazloom, M. and Miri, S.M. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5(2), 87-99. https://doi.org/10.12989/acc.2017.5.2.087.   DOI
13 Trasferetti, B.C., Gelamo, R.V., Rouxinol, F.P., Bica de Moraes, M.A., Goncalves, M.D.C. and Davanzo, C.U. (2004), "Nanocomposites of amorphous hydrogenated carbon and siloxane networks produced by PECVD", Chem. Mater., 16(4), 567-569. https://doi.org/10.1021/cm0348139.   DOI
14 Parande, A.K. (2013), "Role of ingredients for high strength and high performance concrete-A review", Adv. Concrete Constr., 1(2), 151. https://doi.org/10.12989/acc.2013.1.2.151.   DOI
15 Ransinchung, R.N. and Kumar, B. (2009), "Investigations on pastes and mortars of ordinary portland cement admixed with wollastonite and microsilica", J. Mater. Civ. Eng., 22(4), 305-313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000019.   DOI
16 Roy, R., Roy, R.A. and Roy, D.M. (1986), "Alternative perspectives on "quasi-crystallinity": Non-uniformity and nanocomposites", Mater. Lett., 4(8-9), 323-328. https://doi.org/10.1016/0167-577X(86)90063-7.   DOI
17 Altoubat, S., Yazdanbakhsh, A. and Rieder, K.A. (2009), "Shear behaviour of macro-synthetic fiber-reinforced concrete beams without stirrups", ACI Mater. J., 106(4), 381.
18 ASTM C348 (2014), Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International, West Conshohocken, PA.
19 Babak, F., Abolfazl, H., Alimorad, R. and Parviz, G. (2014), "Preparation and mechanical properties of graphene oxide: Cement nanocomposites", Sci. World J., 2014, 276323. https://doi.org/10.1155/2014/276323.   DOI
20 Monteny, J., De Belie, N. and Taerwe, L. (2003), "Resistance of different types of concrete mixtures to sulfuric acid", Mater. Struct., 36(4), 242-249. https://doi.org/10.1007/BF02479618.   DOI
21 Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polym., 52(1), 5-25. https://doi.org/10.1016/j.polymer.2010.11.042.   DOI
22 Siddique, R. (2011), "Utilization of silica fume in concrete: Review of hardened properties", Resour. Conserv. Recyl., 55(11), 923-932. https://doi.org/10.1016/j.resconrec.2011.06.012.   DOI
23 Viswanathan, V., Laha, T., Balani, K., Agarwal, A. and Seal, S. (2006), "Challenges and advances in nanocomposite processing techniques", Mater. Sci. Eng., 54(5-6), 121-285. https://doi.org/10.1016/j.mser.2006.11.002.   DOI
24 Camargo, P.H.C., Satyanarayana, K.G. and Wypych, F. (2009), "Nanocomposites: Synthesis, structure, properties and new application opportunities", Mater. Res., 12(1), 1-39. https://doi.org/10.1590/S1516-14392009000100002.   DOI
25 ASTM C1012 (2010), Standard Test Method for Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, ASTM International, West Conshohocken, PA.
26 ASTM C1585 (2013), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic, ASTM International, West Conshohocken, PA.
27 Kalla, P., Misra, A., Gupta, R.C., Csetenyi, L., Gahlot, V. and Arora, A. (2013), "Mechanical and durability studies on concrete containing wollastonite-fly ash combination", Constr. Build. Mater., 40, 1142-1150. https://doi.org/10.1016/j.conbuildmat.2012.09.102.   DOI
28 Kawashima, S., Seo, J.W.T., Corr, D., Hersam, M.C. and Shah, S.P. (2014), "Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems", Mater. Struct., 47(6), 1011-1023. https://doi.org/10.1617/s11527-013-0110-9.   DOI
29 Kwan, A.K.H. and McKinley, M. (2014), "Packing density and filling effect of limestone fines," Adv. Concrete Constr., 2(3), 209-227. https://doi.org/10.12989/acc.2014.2.3.209.   DOI
30 Roy, R., Mitra, A., Ganesh, A.T and Sairam, V. (2018), "Effect of graphene oxide nanosheets dispersion in cement mortar composites incorporating metakaolin and silica fume", Constr. Build. Mater., 186, 514-524. https://doi.org/10.1016/j.conbuildmat.2018.07.135.   DOI
31 Li, Z., Wang, H., He, S., Lu, Y. and Wang, M. (2006), "Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite", Mater. Lett., 60(3), 356-359. https://doi.org/10.1016/j.matlet.2005.08.061.   DOI
32 Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and graphene oxide: synthesis, properties, and applications", Adv. Mater., 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068.   DOI
33 Bhanja, S. and Sengupta, B. (2005), "Influence of silica fume on the tensile strength of concrete", Cement Concrete Res., 35(4), 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024.   DOI
34 Bustos-Garcia, A., Moreno-Fernandez, E., Zavalis, R. and Valivonis, J. (2019), "Diagonal compression tests on masonry wallets coated with mortars reinforced with glass fibres", Mater. Struct., 52(3), 60. https://doi.org/10.1617/s11527-019-1360-y.   DOI
35 ASTM C494 Type F (2017), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA.
36 ASTM C642 (2013), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA.
37 Diamanti, M.V., Ormellese, M. and Pedeferri, M. (2008), "Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide", Cement Concrete Res., 38(11), 1349-1353. https://doi.org/10.1016/j.cemconres.2008.07.003.   DOI
38 Xu, Y., Zeng, J., Chen, W., Jin, R., Li, B. and Pan, Z. (2018), "A holistic review of cement composites reinforced with graphene oxide", Constr. Build. Mater., 171, 291-302. https://doi.org/10.1016/j.conbuildmat.2018.03.147.   DOI
39 Sun, Y.F., Zhou, T.S., Gao, P.W., Chen, M., Liu, H.W. and Xun, Y. (2019), "Microstructure and microwave absorption properties of cement-based material reinforced with reduced graphene oxide and nanoparticles", Strength Mater., 51(4), 601-608. https://doi.org/10.1007/s11223-019-00106-4.   DOI
40 Zhou, R., Lai, X., Li, H., Tang, S. and Zeng, X. (2014), "Enhancement of wollastonite on flame retardancy and mechanical properties of PP/IFR composite", Polym. Compos., 35(1), 158-166. https://doi.org/10.1002/pc.22645.   DOI
41 Kuila, T., Bose, S., Hong, C.E., Uddin, M.E., Khanra, P., Kim, N.H. and Lee, J.H. (2011), "Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method", Carbon, 49(3), 1033-1037. https://doi.org/10.1016/j.carbon.2010.10.031Get.   DOI
42 Libre, N.A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011), "Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice", Constr. Build. Mater., 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058.   DOI
43 Gangopadhyay, R. and De, A. (2000), "Conducting polymer nanocomposites: A brief overview", Chem. Mater., 12(3), 608-622. https://doi.org/10.1021/cm990537f.   DOI
44 Cao, X., Xu, C., Wang, Y., Liu, Y., Liu, Y. and Chen, Y. (2013), "New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber", Polym. Test., 32(5), 819-826. https://doi.org/10.1016/j.polymertesting.2013.04.005.   DOI
45 Deng, X., Yang, W., Liu, X.Q., Cheng B.J. and Liu T. (2013), "Study on properties of wollastonite micro fiber reinforced mortar", Adv. Mater. Res., 785, 151-156. https://doi.org/10.4028/www.scientific.net/AMR.785-786.151.   DOI
46 Rattanasak, U. and Chindaprasirt, P. (2015), "Properties of alkali activated silica fume-Al(OH)3-fluidized bed combustion fly ash composites", Mater. Struct., 48(3), 531-540. https://doi.org/10.1617/s11527-014-0413-5.   DOI
47 Soliman, A.M. and Nehdi, M.L. (2014), "Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete", Cement Concrete Compos., 46, 81-89. https://doi.org/10.1016/j.cemconcomp.2013.11.008.   DOI
48 Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon-and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.   DOI
49 Tasdemir, C. (2003), "Combined effects of mineral admixtures and curing conditions on the sorptivity coefficient of concrete", Cement Concrete Res., 33(10), 1637-1642. https://doi.org/10.1016/S0008-8846(03)00112-1.   DOI
50 Tong, T., Fan, Z., Liu, Q., Wang, S., Tan, S. and Yu, Q. (2016), "Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials", Constr. Build. Mater., 106, 102-114. https://doi.org/10.1016/j.conbuildmat.2015.12.092.   DOI
51 Wang, X.H., Jacobsen, S., Lee, S.F., He, J.Y. and Zhang, Z.L. (2010), "Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar", Mater. Struct., 43(1-2), 125. https://doi.org/10.1617/s11527-009-9475-1.   DOI
52 Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9.   DOI
53 Chuah, S., Pan, Z., Sanjayan, J.G., Wang, C.M. and Duan, W.H. (2014), "Nano reinforced cement and concrete composites and new perspective from graphene oxide", Constr. Build. Mater., 73, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.09.040.   DOI
54 Dey, V., Kachala, R., Bonakdar, A. and Mobasher, B. (2015), "Mechanical properties of micro and sub-micron wollastonite fibres in cementitious composites", Constr. Build. Mater., 82, 351-359. https://doi.org/10.1016/j.conbuildmat.2015.02.084.   DOI
55 Gong, K., Pan, Z., Korayem, A.H., Qiu, L., Li, D., Collins, F. and Duan, W.H. (2014), "Reinforcing effects of graphene oxide on portland cement paste", J. Mater. Civ. Eng., 27(2), A4014010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125.   DOI
56 Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017.   DOI
57 Wahab, M.A., Latif, I.A., Kohail, M. and Almasry, A (2017), "The use of Wollastonite to enhance the mechanical properties of mortar mixes", Constr. Build. Mater., 152, 304-309. https://doi.org/10.1016/j.conbuildmat.2017.07.005.   DOI
58 Wang, Q., Wang, J., Lu, C.X., Liu, B.W., Zhang, K. and Li, C.Z. (2015), "Influence of graphene oxide additions on the microstructure and mechanical strength of cement", New Carbon Mater., 30(4), 349-356. https://doi.org/10.1016/S1872-5805(15)60194-9.   DOI
59 Wong H.S. and Razak H.A. (2005), "Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance", Cement Concrete Res., 35(4), 696-702. https://doi.org/10.1016/j.cemconres.2004.05.051.   DOI
60 Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon, C.H. (2017), "Synthesis of graphene oxide using modified hummers method: solvent influence", Proc. Eng., 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118.   DOI
61 Zhang, Y., Zhang, W. and Zhang, Y. (2019), "Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete", Adv. Concrete Constr., 8(1), 47-54. https://doi.org/10.12989/acc.2019.8.1.047.   DOI
62 Zheng, J., An X. and Wu Q. (2015), "Numerical pressure threshold method to simulate cement paste slump flow", Mater. Struct., 48(7), 2063-2081. https://doi.org/10.1617/s11527-014-0293-8.   DOI
63 Li, W., Li, X., Chen, S.J., Liu, Y.M., Duan, W.H. and Shah, S.P. (2017), "Effects of graphene oxide on earlyage hydration and electrical resistivity of Portland cement paste", Constr. Build. Mater., 136, 506-514. https://doi.org/10.1016/j.conbuildmat.2017.01.066.   DOI
64 IS:12269 (2013), Indian Standard: Specification for 53 grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi.
65 Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M. (2011), "A review on the tensile properties of natural fiber reinforced polymer composites", Compos., 42(4), 856-873.   DOI
66 Low, N.M. and Beaudoin, J.J. (1992), "Mechanical properties of high performance cement binders reinforced with wollastonite micro-fibres", Cement Concrete Res., 22(5), 981-989. https://doi.org/10.1016/0008-8846(92)90122-C.   DOI