• Title/Summary/Keyword: Fully Stressed Design

Search Result 11, Processing Time 0.03 seconds

A Study on the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화에 관한 연구)

  • Lee, Yeong-Sin;Ryu, Chung-Hyeon;Myeong, Chang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1444-1451
    • /
    • 2001
  • The evolutionary structural optimization(ESO) method has been under continuous development since 1992. The bidirectional evolutionary structural optimization(BESO) method is made of additive and removal procedure. The BESO method is very useful to search the global optimum and to reduce the computational time. This paper presents the ranked bidirectional evolutionary structural optimization(R-BESO) method which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

Shape Optimization on the Nozzle of a Spherical Pressure Vessel Using the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화 기법을 이용한 구형 압력용기 노즐부의 형상최적화)

  • Lee, Young-Shin;Ryu, Chung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.752-757
    • /
    • 2001
  • To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The ranked bidirectional evolutionary structural optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force.

  • PDF

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

An Optimality Criteria applied to the Design of Plane Frames (평면 뼈대 구조물의 설계에 적용된 최적규준)

  • 정영식;김봉익;김창규
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 1996
  • This work proposes an optimality criteria applicable to the optimum design of plane frames subject to multiple behavioral constraints on member stresses and lateral displacements of nodes and also to side constraints on design variables. The method makes use of a first order approximation for both deflection and stress constraints instead of the zero order approximation based on the concept of FSD (fully stressed design). A redesign algorithm is derived from a mathematically rigorous method which uses the Newton-Raphson method to solve the system of nonlinear constraint equations and reduces the design space whenever minimum size restrictions become active. When applied to worked examples it proved more accurate and efficient, and it is often found that optimum designs are not fully stressed designs. This fact suggests that this rigorous method is worth what it claims for complicated computing and thus had better replace the crude stress ratio algorithm adopted by the majority of optimality criteria approaches. This is particularly true as long as we enjoy ever-increasing computing power at negligible costs.

  • PDF

Optimum Design of Plane Frames Subject to Displacement and Stress Constraints (처짐과 응력제약(應力制約)을 받는 평면(平面) 뼈대의 최적설계(最適設計))

  • Chung, Young Shik;Lee, Jae Whane
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1987
  • This work presents an optimality criteria method which gives accurate solution to the structural optimization problem of plane frames subject to displacement and stress constraints. The method is made efficient, as well as rigorous, by including only the lateral displacement of the top floor in the set of behavioral constraints. The bending stresses of members are treated as side constraints based on the concept of fully-stressed-design, but the optimality of the final design is tested by treating them as behavioral constraints and examining if the design satisfies this new optimality criteria. Worked examples show the superiority of the rigorous opimality criteria in spite of its being simple and efficient.

  • PDF

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.

Three-dimensional structural design based on cellular automata simulation

  • Kita, E.;Saito, H.;Tamaki, T.;Shimizu, H.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.29-42
    • /
    • 2006
  • This paper describes the design scheme of the three-dimensional structures based on the concept of the cellular automata simulation. The cellular automata simulation is performed according to the local rule. In this paper, the local rule is derived in the mathematical formulation from the optimization problem. The cell density is taken as the design variable. Two objective functions are defined for reducing the total weight of the structure and obtaining the fully stressed structure. The constraint condition is defined for defining the local rule. The penalty function is defined from the objective functions and the constraint condition. Minimization of the penalty function with respect to the design parameter leads to the local rule. The derived rule is applied to the design of the three-dimensional structure first. The final structure can be obtained successfully. However, the computational cost is expensive. So, in order to reduce the computational cost, the material parameters $c_1$ and $c_2$ and the value of the cell rejection criterion (CRC) are changed. The results show that the computational cost depends on the parameters and the CRC value.

Valve Support Design for Improved Flexural Rigidity Against Strong Earthquake (강진 대비 굽힘 강성 향상을 위한 밸브지지대 형상 설계)

  • Kim, Dae Jin;Kim, Hyoung Eun;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.75-80
    • /
    • 2017
  • In this study, seismic performance of various types of valve supports in terms of flexural rigidity are evaluated by FEA using equivalent static load method. Flexural rigidity of the existing two types of valve supports can be effectively improved by simply adding one more bracket on the other side of support. New types of polygonal valve supports with a concept of fully stressed beam theory are suggested and it is verified that the new supports are rigid enough to withstand stronger earthquake which we should be prepared for.

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.