Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.1.121

Optimum shape and length of laterally loaded piles  

Fenu, Luigi (Department of Civil & Environment Engineering and Architecture, University of Cagliari)
Briseghella, Bruno (College of Civil Engineering, Fuzhou University)
Marano, Giuseppe Carlo (College of Civil Engineering, Fuzhou University)
Publication Information
Structural Engineering and Mechanics / v.68, no.1, 2018 , pp. 121-130 More about this Journal
Abstract
This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.
Keywords
Winkler's soil model; fully stressed beam; FSD method; optimum length;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Palmer, L.A. and Thompson, J.B. (1948), "The earth pressure and deflection along the embedded lengths of piles subjected to lateral thrusts", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, the Netherlands. June.
2 Davisson, M.T. (1970), Lateral Load Capacity of Piles, Highway Research Record, NO.333, Washington, D.C., U.S.A., 104-112.
3 Carrol, W.F. (1999), A Primer for Finite Elements in Elastic Structures, John Wiley & Sons, Inc., New York, U.S.A.
4 Elsgolts, L.E. (1980), Differential Equations and the Calculus of Variations, English Edition, MIR Publishers, Moscow, USSR.
5 Myskis, A.D. (1979), Advanced Mathematics for Engineers, English Edition, MIR Publishers, Moscow, USSR.
6 Banichuk, N.V. and Karihaloo, B.L. (1977), "On the solution of optimization problems with singularities", Int. J. Sol. Struct., 13(8) 725-733.   DOI
7 Fenu, L. (2006), "Pali multiton caricati lateralmente e con spostamento minimo", Proceedings of the 16th CTE Conference, Parma, Italy, November.
8 Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24, 247-268   DOI
9 Fiore, A., Marano, G.C., Greco, R. and Mastromarino, E. (2016), "Structural optimization of hollow-section steel trusses by differential evolution algorithm", Int. J. Steel Struct., 16(2) 411-423.   DOI
10 Greco, R., Marano, G.C. and Fiore, A. (2016), "Performance-cost optimization of tuned mass damper under low-moderate seismic actions", Struct. Des. Tall Spec. Build., 25(18) 1103-1122.   DOI
11 Greco, R. and Marano, G.C. (2016), "Robust optimization of base isolation devices under uncertain parameters", JVC/J. Vibr. Contr., 22(3), 853-868.   DOI
12 Lucchini, A., Greco, R., Marano, G.C. and Monti, G. (2014), "Robust design of tuned mass damper systems for seismic protection of multistory buildings", J. Struct. Eng., 140(8), A4014009.   DOI
13 Marano, G.C., Trentadue, F. and Petrone, F. (2014), "Optimal arch shape solution under static vertical loads", Acta Mech., 225(3) 679-686.   DOI
14 Winkler E. (1867), Die Lehre von der Elastizität und Festigkeit, Verlag Dominicus, Prague, Czech Republic.
15 Mehndirattaa, S., Sawant, V.A. and Samadhiya, N.K. (2014), "Nonlinear dynamic analysis of laterally loaded pile", Struct. Eng. Mech., 49(4), 479-489.   DOI
16 Gandomi, A.H. and Alavi, A.H. (2012), "A new multi-gene genetic programming approach to non-linear system modelling. Part II: Geotechnical and earthquake engineering problems", Neur. Comput. Appl., 21, 189-201.   DOI
17 Imancli, G., Kahyaoglu, M.R., Ozden, G. and Kayalar, A.S. (2009), "Performance functions for laterally loaded single concrete piles in homogeneous clays", Struct. Eng. Mech., 33(4), 529-537.   DOI
18 Baguelin, F., Frank, R. and Said, Y.H. (1997), "Theoretical study of lateral reaction mechanism of piles", Geotech Prague, 27(3), 405-434.
19 David, T.K. and Forth, J.P. (2011), Modelling of Soil Structure Interaction of Integral Abutment Bridges, World Academy of Science, Engineering and Technology, 5, 2011-06-26, 645-650.
20 Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", JVC/J. Vibr. Contr., 17(5), 679-688.   DOI
21 Marano, G.C., Greco, R., Quaranta, G., Fiore, A., Avakian, J. and Cascella, D. (2013), "Parametric identification of nonlinear devices for seismic protection using soft computing techniques", Adv. Mater. Res., 639-640(1) 118-129.
22 Quaranta, G., Fiore, A. and Marano, G.C. (2014), "Optimum design of prestressed concrete beams using constrained differential evolution algorithm", Struct. Mult. Opt., 49(3), 441-453.   DOI
23 Zordan, T., Briseghella, B. and Mazzarolo, E. (2010), "Bridge structural optimization through step-by-step evolutionary process", Struct. Eng. Int. (SEI), 20(1), 72-78.   DOI
24 Kavitha, P.E., Beena, K.S. and Narayanan, K.P. (2016), "A review on soil-structure interaction analysis of laterally loaded piles", Innov. Infrastruct. Solut., 1, 14.   DOI
25 Ashour, M. and Norris, G. (2000), "Modelling lateral soil-pile response based on soil-pile interaction", J. Geotech. Geoenviron. Eng., 126(5), 420-428.   DOI
26 Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759.   DOI
27 Kim, Y. and Jeong, S. (2011), "Analysis of soil resistance on laterally loaded piles based on 3d soil-pile interaction", Comp. Geotech., 2, 248-257.
28 Chik, K.H., Abbas, J.M. and Taha, M.R. (2008), "Single pile simulation and analysis subjected to lateral load", EJGE-Electr. J. Geotech. Eng., 13.
29 McGann, C.R. and Arduino, P. (2011), Laterally-Loaded Pile Foundation, from OpenSeesWiki: .
30 McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2011), "Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil", J. Geotech. Geoenviron. Eng., 137(6), 557-567.   DOI
31 Ahmadi, M.M. and Ahmari, S. (2009), "finite element modelling of laterally loaded piles in clay", Proceedings of the Institution of Civil Engineering-Geotechnical Engineering, 162(3), 151-163.
32 Kok, S.T. and Huat B.B.K. (2008) "Numerical modelling of laterally loaded piles", Am. J. Appl. Sci., 5(10), 1403-1408.   DOI
33 Juirnarongrit, T. and Ashford, S.A. (2004), "Lateral load behaviour of cast-in-drilled-hole piles in weakly cemented sand", Transp. Res. Rec. J. Transp. Res. Board, 1868, 190-198.
34 Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(2), 27-64.
35 Broms, B.B. (1964), "Lateral resistance of piles in cohesion less soils", J. Soil Mech. Found. Div., 90(3), 123-158.
36 Krishnamoorthy, N. and Sharma, K.J. (2008), "Analysis of single and group of piles subjected to lateral load using finite element method", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) Goa, India, October.
37 Phanikanth, V.S., Choudhury, D. and Rami Reddy, G. (2010), "Response of single pile under lateral loads in cohesion less soils", EJGE-Electr. J. Geotech. Eng., 15.
38 Bowles, J.E. (1996), Foundation Analysis and Design, McGraw-Hill, 5th edition, New York, U.S.A.
39 Wakai, A., Gose, S. and Ugai, K. (1999), "3D Elasto-plastic finite element analyses of pile foundations subjected to lateral loading", Soil. Foundat. (The Jap. Geotech. Soc.), 39(1), 97-111.   DOI
40 Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, Inc., New York, U.S.A.
41 Haftka, R.T. and Gurdal, Z. (1993), Elements of Structural Optimization, Kluwer Academic Publishers, Dordrecht, Boston, London.
42 Fenu, L. and Serra, M. (1995), "Optimum design of beams surrounded by a Winkler's medium", Struct. Opt., 9, 132-135.   DOI
43 Fenu, L. (2005), "On the characteristics of optimum beams with optimum length surrounded by a Winkler's medium", Struct. Mult. Opt., 30 (3), 243-250.   DOI
44 Fenu, L. and Madama, G. (2006) "Laterally loaded R/C bored piles with minimum horizontal top displacement", Proceedings of the 2nd fib Congress, Naples, Italy, June.
45 Lan, C., Briseghella, B., Fenu, L., Xue, J. and Zordan, T. (2017), "Piles optimal shapes in integral abutment bridges", J. Traff. Transp. Eng., 4(6), 576-593.
46 Han, J. and Frost, J.D. (2000), "Load-deflection response of transversely isotropic piles under lateral loads", Int. J. Numer. Anal. Meth. Geomech., 24(5), 509-529.   DOI
47 Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", Int. J. Numer. Analy. Meth. Geo Mech., 2, 1-31.
48 Reese, L.C. and Desai, C.S. (1977), Laterally Loaded Piles, In: Desai, C.S. and Christian, J.T. (Edited by) Numerical Methods in Geotechnical Engineering, McGraw-Hill Book Company, New York, U.S.A.
49 Brown, D.A. and Shie, C.F. (1990), "Three dimensional finite element model of laterally loaded piles", Comp. Geotech., 10(1), 59-79.   DOI
50 Bartholomew, P. and Morris, A.J. (1976), "A unified approach to fully-stressed design", Eng. Opt., 2(1), 3-15.   DOI
51 Patnaik, S.N. and Hopkins, D.A. (1998), "Optimality of a fully stressed design", Comp. Meth. Appl. Mech. Eng., 165(1-4),215-221.   DOI
52 Briseghella B., Fenu, L., Feng, Y., Lan, C., Mazzarolo, E. and Zordan, T. (2016), "Optimization indexes to identify the optimal design solution", J. Brid. Eng., 21(3), 04015067-1-04015067-12.   DOI
53 Briseghella, B., Fenu, L., Feng, Y., Mazzarolo, E. and Zordan, T. (2013), "Topology optimization of bridges supported by a concrete shell", Struct. Eng. Int., 23(3), 285-294.   DOI
54 Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E. and Zordan, T. (2013), "Application of topological optimization to bridge design", J. Brid. Eng.
55 Zordan, T., Briseghella, B. and Lan C. (2011), "Analytical formulation for limit length of integral abutment bridges", Struct. Eng. Int. (SEI), 21(3), 304-310.   DOI
56 Zordan, T. and Briseghella, B. (2007), "Attainment of an integral abutment bridge through the refurbishment of a simply supported structure", Struct. Eng. Int. (SEI), 17(3), 228-234.   DOI
57 Briseghella, B. and Zordan T. (2007), "Integral abutment bridge concept applied to the rehabilitation of a simply supported concrete structure", Struct. Concrete, 8(1), 25-33.   DOI
58 Zordan, T., Briseghella, B. and Lan, C. (2011), "Parametric and pushover analyses on integral abutment bridge", Eng. Struct., 33(2), 502-515.   DOI
59 Kim, W. and Laman, J.A. (2013), "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Struct. Eng. Mech., 46(1), 53-73.   DOI
60 Kim, W., Laman, J.A. and Park, J.Y. (2014), "Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects", Struct. Eng. Mech., 50(3), 305-322   DOI
61 Far, N.E., Maleki, S. and Barghian, M. (2015), "Design of integral abutment bridges for combined thermal and seismic loads", Earthq. Struct., 9(2), 415-430.   DOI
62 Nakhaee, M. and Johari, A. (2013), "Genetic based modelling of undrained lateral load capacity of piles in cohesion soils", Glob. J. Sci. Eng. Technol., 5, 123-133.
63 Baki, S.A., Al-Jassim, J. and Qasim, R.M. (2016), "Parametric study of the lateral behavior of cast in drilled hole piles", Am. J. Civil Eng., 4(5), 247-253.
64 Eicher, J.A., Guan, H. and Jeng, D.S. (2002), "A parametric study of a offshore concrete pile under combined loading conditions using finite element method", Electr. J. Struct. Eng., 1.