• Title/Summary/Keyword: Full-scale room test

Search Result 19, Processing Time 0.019 seconds

Fire Test of Old Type Interiors of Subway Vehicle in ISO 9705 Room (ISO 9708 룸 설비를 이용한 구형 지하철 내장재 화재시험)

  • Lee, Duck-Hee;Park, Won-Hee;Jung, Woo-Sung;Hwang, Jung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.481-487
    • /
    • 2010
  • A room scale fire test was done for interior materials from a subway vehicle installed within an ISO 9705 fire test room. The interior materials are the old ones which were made before the new fire safety guideline of subway vehicles. The output of ignition burner was increased in controlled steps to CEN/TS 45545-1. The objectives of this interior fire test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving subway vehicle interior materials that grow to flashover. Temperatures, heat flux and heat release rate variations verse time of the test are measured. Heat release rate is compared with that of calculated by modified flaming area based summation method. These test results will be used for verification of CFD fire simulation of full subway vehicle.

Numerical simulation of complex hexagonal structures to predict drop behavior under submerged and fluid flow conditions

  • Yoon, K.H.;Lee, H.S.;Oh, S.H.;Choi, C.R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • This study simulated a control rod assembly (CRA), which is a part of reactor shutdown systems, in immersed and fluid flow conditions. The CRA was inserted into the reactor core within a predetermined time limit under normal and abnormal operating conditions, and the CRA (which consists of complex geometric shapes) drop behavior is numerically modeled for simulation. A full-scale prototype CRA drop test is established under room temperature and water-fluid conditions for verification and validation. This paper describes the details of the numerical modeling and analysis results of the several conditions. Results from the developed numerical simulation code are compared with the test results to verify the numerical model and developed computer code. The developed code is in very good agreement with the test results and this numerical analysis model and method may replace the experimental and CFD method to predict the drop behavior of CRA.

A Study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels (내빙선박용 풍우밀 문의 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Chun, Eun-Ji;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.575-580
    • /
    • 2011
  • Icing problem of ice-strengthened vessels is an important issue when operating in low temperature environment and it can cause damage to deck machineries and emergency equipments. Many ice-strengthened vessels have since been constructed and operated in accordance with the ice class rules such as Det Norske Veritas (DNV), Russian Maritime Register of Shipping (RS), American Bureau of Shipping (ABS) and so on. Therefore winterization is defined as the preparation of a ship for safe operation. In this research, anti-icing performance tests of weather-tight door have been carried out at various temperature conditions($5^{\circ}C$, $-10^{\circ}C$, $-20^{\circ}C$, $-30^{\circ}C$, $-40^{\circ}C$) in the low temperature cold room facility and then, ambient temperature, specimen temperature, electric current and temperature of heating cable were measured during the test operations. This research describes the construction guidelines of weather-tight door based on anti-icing test results to apply to the full-scale vessels.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

Application of Water Mist System for a Power Transformer Room - Fire Extinguishment(Part 1) (변압기실 화재에 대한 미분무수 소화시스템의 적용 - 소화특성을 중심으로(Part 1))

  • Han Yong-Shik;Choi Byung-Il;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.32-36
    • /
    • 2005
  • A water mist system was considered as a possible alternative to a gaseous suppression system that can not prevent re-ignition after fire extinguishment for a power transformer room. This study deals with the fire suppression capability of the water mist systems. High-and low-pressure water mist systems were examined to compare efficiency of both systems. The power transformer examined in this study occupied about $7\%$ of a $10m\times10m\times$ transformer room. Full-scale suppression tests were performed for six different fire scenarios: two spray fires, three pool fires and one cascade fire. The fire suppression test results demonstrated that the high-pressure system was superior to the low-pressure system, especially considering oxygen depletion and the ambient temperature distribution.

A Research on Thermal Properties & Fire Resistance of A Water Film Covered Glazing System for Large Atrium Space (대규모 아트리움에 적용되는 수박형성 유리벽의 열적 특성 및 내화성능에 관한 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-55
    • /
    • 1999
  • In order practically to use fire-defective glazing materials for the compartment wall where a fire-protection rating is mandated, there have been many trials internationally, This research focuses on a feasibility that, if certain water film covered all surface of glass, the glazing system can endure without breaking out under the compartment fire. First of all, a water film spray system was specially designed to wet the entire surface of the glass and also to have tiny small amount of water rebounded from the surface after emitted from nozzles. After this system has proven to have perfect performance, small-scale tests were done to find out if the water film covered glazing system react to the high temperature curve in a small furnace room. Finally, on basis of the obtained data, full-scale experiments were done so that water-film covered glazing system can pass the Korean Standard (KS) test for fire resistance, KS F2257.

  • PDF

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

An Experimental Study on the Application of Horizontal Daylight Duct System in Building Interior Space (실내 건축공간에 있어 수평채광덕트 시스템의 적용에 관한 실험적 연구)

  • 이성주;김회서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-43
    • /
    • 2004
  • The purpose of this paper was development of modified horizontal daylight duct for reflector of light intake, location of outlet diffuser and size as applicable daylighting system for buildings and, verified applicable possibility base on analysis of daylighting performance through full-scale model test. Experimental result showed that ratio of illumination for light duct was measured 0.3∼0.4% in interior of a room on clear sky. Also, light duct had wide distribution of illumination than duct about 150[cm] and was decided efficient lighting energy saving because of high daylight performance in case of application actual building during daytime.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.