• Title/Summary/Keyword: Full-Scale Pipe

Search Result 69, Processing Time 0.04 seconds

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Structural Performance Evaluation of Joint between PHC Pile and Steel Tube Column (강관기둥과 PHC 파일을 연결하는 접합부에 관한 구조성능평가)

  • Kim, Sang-Bong;Oh, Jin-Tak;Kim, Young-Sik;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.85-93
    • /
    • 2015
  • This paper presents a foundation pile to steel column connection that can resist large magnitude of moment and that can be easy installed. The developed joint has spherical shape and it is given the name HAT joint to mean Hallow half-sphere steel joint. Four types of HAT joints are developed. Namely, H-type, T-type, P-type and K-type. In this paper I will talk about the performance assessment of T-type(Tube Column) and P-type(Pile Column) of HAT joints with finite element analysis and experiment on a full scale model is presented.

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis (재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석)

  • Ryu, Hee Ryong;Lee, Eung Ho;Cho, Myeong Whan;Yu, In Ho;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.459-465
    • /
    • 2012
  • This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

A Study of using Wall Function for Numerical Analysis of High Reynolds Number Turbulent Flow (고 레이놀즈수 유동의 수치해석시 벽함수 사용에 관한 연구)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.647-655
    • /
    • 2010
  • In this paper, a numerical study is carried out for super-pipe, flat plate and axisymmetric body flows to investigate a validity of using wall function and high $y_1^+$ in calculation of high Reynolds number flow. The velocity profiles in boundary layer agree well with the law of the wall. And it is found that the range of $y^+$��which validated the logarithmic law of the wall grows with increasing Reynolds number. From the result, an equation is suggested that can be used to estimate a maximum $y^+$ value of validity of the log law. And the slope(1/$\kappa$) of the log region of the numerical result is larger than that of experimental data. On the other hand, as $y_1^+$ is increasing, both the friction and the pressure resistances tend to increase finely. When using $y_1^+$ value beyond the range of log law, the surface shear stress shows a significant error and the pressure resistance increases rapidly. However, when using $y_1^+$ value in the range, the computational result is reasonable. From this study, the use of the wall function with high value of $y_1^+$ can be justified for a full scale Reynolds number ship flow.

Damage Type and Remaining Strength of Damaged Pipelines due to the Third Party Interference (외부장비에 의한 손상배관의 손상유형 및 잔류강도)

  • Kim, Young Pyo;Baek, Jong Hyun;Kim, Cheol Man;Kim, Woo Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.20-26
    • /
    • 2009
  • The dominant incidents category for onshore and offshore natural gas transmission pipelines in the world is associated with outside forces. Incidents in the outside forces category embrace acts of nature, which typically cause widespread structural damage, as well as act of man, whose effects tend to cause dents and/or gouges localized at point of contact that are referred to as mechanical damage. Therefore, these damage types must be better addressed to avoid unnecessary and costly repairs and the possibility of catastrophic events. First of all, the characterizing features of mechanical damage in gas pipelines were evaluated by using of excavator or boring machine. There is no reliable method for evaluating the safe operating pressure of pipeline affected by mechanical damage. It is especially important to evaluate the remaining strength of damaged pipelines due to outside force. Therefore, the full scale burst tests were conducted to evaluate the remaining strength of pipe with mechanical damage that combines a dent and a gouge. This paper is supposed to provide information that will assist in developing a criterion to assess serviceability in pipelines with mechanical damage.

  • PDF

THE CORRELATION OF PRESSURE DROP FOR SURFACE ROUGHNESS AND CURVATURE RADIUS IN A U-TUBE (표면 조도와 곡률 반경에 대한 U-자관 압력 손실의 상관관계)

  • Park, J.H.;Chang, S.M.;Lee, S.Y.;Jang, G.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this research, we studied the pressure drop affecting on the internal surface roughness and the curvature radius of a U-tube, which is used for the cooling system in PWR(Pressurized Water Reactor). Using ANSYS-FLUENT, a commercial code based on CFD(Computational Fluid Dynamics) technique, we compared a Moody chart with the Darcy friction factor changed by a range of various surface roughness and Reynolds numbers of a straight pipe model. We studied the effect giving variation about a range of various surface roughness and the curvature radius of the full scale U-tube model. The material of the heat transfer tube is Inconel 690 used in the steam generator. We compared the velocity distribution of selected 4 locations, and derived the correlation between the surface roughness and the pressure drop for the U-tube of each representative curvature radius using the linear regression method.