Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis

재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석

  • Ryu, Hee Ryong (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Lee, Eung Ho (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Cho, Myeong Whan (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Yu, In Ho (Protected Horticulture Research Station, NIHHS, RDA) ;
  • Kim, Young Chul (Protected Horticulture Research Station, NIHHS, RDA)
  • 류희룡 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 이응호 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 조명환 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 유인호 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 김영철 (농촌진흥청 국립원예특작과학원 시설원예시험장)
  • Received : 2012.11.05
  • Accepted : 2012.11.26
  • Published : 2012.12.31

Abstract

This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.

부재 교차 결합부 조건에 따른 초기강성은 고정 조건인 경우와 비교하여 반고정 조건인 경우 33% 작게 나타났으나 부재 교차 결합부 특성에 의하여 재하지점과 3m 떨어진 지점에서는 9% 크게 나타났다. 즉, 고정 조건인 경우 구조물 전체로 하중이 분산되어 재하지점과 떨어진 지점에서는 상대적으로 반고정 조건 구조물의 강성이 높게 나타났다. 기초 조건에 따른 초기 강성은 강관 삽입 기초의 경우에는 고정기초 조건과 비교하여 31% 크게 나타났으며, 휨강성은 20% 높게 나타났다. 인터페이스 요소(beam interface element, BIE) 및 지반요소(3-D solid element)를 사용하여 재하시험 결과를 기반으로 각종 계수를 산정하고 시험조건과 동일하게 수치모델링하여 유한요소해석을 수행한 결과 실험결과와 유사한 구조거동을 나타냈다. 그러나 극한하중 조건에서는 비선형 특성의 발현 등에 의하여 다소 상이한 결과 값을 보였다. 이상의 결과로부터 플라스틱 필름 온실의 설계 및 구조성능 평가에서 절점 및 지점 조건에 대한 임의 또는 과다한 이상화는 구조물의 성능 평가에 적지 않은 영향을 줄 수 있음을 알 수 있었다. 한편 플라스틱 필름 온실은 세장한 부재로 구성된 유연한 철골 구조물이므로 구조성능 산정에 있어서 좌굴과 함께 대변형 및 지반의 비선형 특성 등을 충분히 고려해야 할 것으로 판단된다.

Keywords

References

  1. Beytes, C. 2003. Ball Redbook-Greenhouses and Equipment. 17th ed. Ball Publishing, IL, USA. p. 1-26.
  2. British Standard Institute. 2002. Greenhouses-Design and construction- BS EN13031-1:2001. BSI, London, UK.
  3. Castellano, S., A. Candura, and G. Scarascia-Mugnozza. 2005. Greenhouse structure SLS analysis: Experiment results and normative aspects. ISHS Acta Horticulturae. 691:701-708.
  4. Gutierrez, R., A. Loureiro, M. Lopez, and A. Moreno. 2011. Analysis of cold-formed purlins with slotted sleeve connections. Thin-Walled Structure 49(7):833-841. https://doi.org/10.1016/j.tws.2011.02.008
  5. Hadianfard, M.A. and R. Razani. 2003. Effects of semi-rigid behavior of connections in the reliability of steel frames. Structural Safety 25(2003):123-138.
  6. Heuvelink, E. 2005. Tomatoes. CABI Publishing, MA, USA. p. 274-307.
  7. Iannone, F., M. Latour, V. Piluso, and G. Rizzano. Experimental analysis of bolted steel beam-to-column connections: Compnent identification. J. Earthquake Engineering. 15(2):214-244.
  8. Japan Greenhouse Horticulture Association. 2005. Handbook of protected horticulture. JGHA, Tokyo, Japan.
  9. Kim, M.K., J.E. Son, and S.W. Nam. 1992. Studies on the structural design of biological production facility: (2) Simple method for design load estimation and safety test. J. of Biological Production Facilities & Environment Control 1(2):148-153 (in Korean).
  10. Lee, J.Y. 2001. Visual FEA user's manual. Intuition Software, Jeonbuk, Korea.
  11. National Greenhouse Manufacturers Association. 2004. Structural Design Manual. NGMA Publications, CO, USA.
  12. Rural Development Corporation of Korea, 1995. Greenhouse construction standards. RDC, Gyeonggi, Korea.
  13. Ryu, H.R., M.W. Cho, I.H. Yu, E.H. Lee, and J.Y. Lee. 2011. Effects of semi-rigid connection and foundation type on static behavior of plastic greenhouse. Proceedings of The Computational Structural Engineering Institute of Korea. Annual Conference. 16, T13 (in Korean).
  14. Santana, C.L.O. and N.T. Mascia. 2009. Wooden framed structures with semi-rigid connections: Quantitative approach focused on design needs. Str. Eng. and Mech. 31(3):315-331. https://doi.org/10.12989/sem.2009.31.3.315
  15. Turkalj, G., J. Brnic, and S. Kravanja. 2011. A beam model for large displacement analysis of flexibly connected thin-walled beam-type structures. Thin-Walled Structure 49(8):1007-1016. https://doi.org/10.1016/j.tws.2011.03.015
  16. Yang, I.K. and Nam S.W. 2008. Study on the snow endurance of pipe-house according to the roof shape by model-testing. Proceedings of Korean Soc. for Bio- Env. Cont. Spring Conference. 17(1):257-260 (in Korean).
  17. Yoon, Y.C., W.M. Suh, and J.H. Cho. 2001. The uplift capacity of plane and corrugated piles for pipe frame greenhouse. J. of Bio-Env. Cont. 10(3):148-154 (in Korean).
  18. Yum, S.H., H.J. Kim, H. Chun, S.Y. Lee, Y.I. Kang, Y.H. Kim, and Y.H. Kim. 2005. Analysis of the structural safety in a non-heating greenhouse with a single cover for Citrus cultivation in Jeju. J. of Bio-Env. Cont. 14(3):166-173 (in Korean).
  19. You, H.Y., Y.A. Shin, M.W. Cho, and I.H. Yu. 2008. A study of structure-soil interaction problem of greenhouse foundations. Proceedings of Korean Soc. for Bio-Env. Cont. Spring Conference. 17(1):456-460 (in Korean).