• Title/Summary/Keyword: Full Bridge

Search Result 1,144, Processing Time 0.026 seconds

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Full Bridge DC-DC Converter with Transformer Isolation for Arc Welding (아크 용접에 적합하며 1차 측 보조회로를 사용하는 영전압-영전류 직류-직류 컨버터)

  • Jeon, Seong-Jeub;Cho Gyu-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.683-692
    • /
    • 2000
  • A new primary-side-assisted zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation is proposed. The auxiliary circuit adopted to assist ZCS for the leading leg is composed of only one small transformer and two diodes. It has a simple and robust structure, and load current control capability even in short circuit conditions. Possibility of magnetic saturation due to asymmetricity of circuits or transient phenomena is greatly reduced, which is a very attractive feature in DC/DC converters with transformer isolation. The power rating of the auxiliary transformer is about 10% of that of the main transformer. Operation of a 12.5KW prototype designed for welding application was verified by experiments.

  • PDF

A novel PWM control of Full-bridge Inverters for Microprocessor Implementation (마이크로프로세서 구현에 의한 전파 브리지 인버터의 새로운 PWM 제어)

  • 전칠환;이수원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.283-288
    • /
    • 2000
  • This paper proposes a novel Pulse Width Modulation (PWM) method for microprocessor implementation of full-bridge PWM inverters. In the method, the period of unipolar full-bridge inverters is divided equally into the frequency modulation ratio and the reference fundamental amplitude and the inverter output fundamental amplitude are compared. Using this method, the turn-on time computation of each interval is very favored for the microprocessor implementation. The harmonic analysis shows that the harmonics can be ignored when the modulation ratio is enough large. The simulation and experimental results show the effectiveness of the proposed algorithms.

  • PDF

ZVS Resonant Energy Unbalance Problem & Solution of ZVS Full-bridge Converter (ZVS Full-bridge 컨버터의 ZVS 공진 에너지 불평형 문제와 해결 방법)

  • Lee Dong-Youn;Lee Il-Oun;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.364-367
    • /
    • 2001
  • ZVS Full-bridge converter is widely used in medium power level(1-3kW). ZVS can be designed within a limited load range and ZVS failure at light load condition is assumed to be acceptable within the given efficiency and thermal constraints. However, unbalanced ZVS resonant energy caused by dc blocking capacitor may alleviate the switching loss problem at light load condition. ZVS resonant energy is unbalanced by do blocking capacitor. This problem causes loss and heat concentration of a switch leg, In this paper, this problem is analyzed, and a novel control method is proposed to solve the problem.

  • PDF

Optimal Design Methodology of Zero-Voltage-Switching Full-Bridge Pulse Width Modulated Converter for Server Power Supplies Based on Self-driven Synchronous Rectifier Performance

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.121-132
    • /
    • 2016
  • In this paper, high-efficiency design methodology of a zero-voltage-switching full-bridge (ZVS-FB) pulse width modulation (PWM) converter for server-computer power supply is discussed based on self-driven synchronous rectifier (SR) performance. The design approach focuses on rectifier conduction loss on the secondary side because of high output current application. Various-number parallel-connected SRs are evaluated to reduce high conduction loss. For this approach, the reliability of gate control signals produced from a self-driver is analyzed in detail to determine whether the converter achieves high efficiency. A laboratory prototype that operates at 80 kHz and rated 1 kW/12 V is built for various-number parallel combination of SRs to verify the proposed theoretical analysis and evaluations. Measurement results show that the best efficiency of the converter is 95.16%.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

An Optimal Structure of Phase Shift Full Bridge Converter for High-capacity On-board Battery Charger of Electric Vehicle (EV용 대용량 탑재형 배터리 충전기에 적합한 Phase Shift Full Bridge Converter의 최적 구조)

  • Kim, Min-Kook;Kim, Yun-Sung;Cho, Nam-Jin;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.35-36
    • /
    • 2012
  • 본 논문은 EV용 탑재형 배터리 충전기(OBC)와 같은 중 대용량 충전시스템에 적용한 Phase Shift Full Bridge Converter (PSFB) 토폴로지를 사용하는 경우, 트랜스포머의 구조에 따른 특성을 분석한다. 일반적으로 PSFB는 다른 토폴로지에 비해 코어 사용 효율이 높기 때문에 상대적으로 소형 경량화 설계가 용이하다. 그러나 수 kW급의 시스템 응용에서는 기존 코어 형상이나 Ap-limit과 제약이 따른다. 또한 특화된 코어의 경우 높은 가격으로 설계 경쟁력이 낮아진다. 따라서 본 논문에서는 이러한 대용량 PSFB의 응용 시스템에 적합한 코어 설계를 위해 다양한 트랜스포머의 구조를 선정하여 그 특성을 비교분석한다.

  • PDF

A Study on the Control of Single Phase Induction Motor by Full Bridge Series Inverter (직렬 브리지형 인버터에 의한 단상 유도전동기의 속도제어)

  • Park, Jin-Gil;Roh, Young-O;Jung, Byung-Gun;Kang, Chang-Nam;Jung, Sam-Sig
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.912-915
    • /
    • 1993
  • In this paper, the speed of single phase induction motor driven by full bridge inverter is controlled by a PID controller under condition of disturbance load and setpoint changes, and the current characteristics of the system is investigated to look for the good properties of A.C. motor torque through the results of experiment. From the experimental result, it is confirmed that the speed of single phase induction motor driven by full bridge series inverter can be smoothly controlled by an analog PID controller.

  • PDF

Loss Analysis for GaN FET-based Full Bridge Converter (GaN FET을 적용한 Full Bridge DC-DC Converter의 동기정류기 손실분석)

  • Jeong, Jea-Woong;Kim, Hyun-Bin;Joo, Dong-Myoung;Lee, Byoung-Kuk;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.149-150
    • /
    • 2016
  • 본 논문은 500W급 GaN (Gallium Nitride) FET을 적용한 Full Bridge Converter 의 2차측 소자에 따른 손실을 분석한다. Diode를 적용하였을 경우의 도통손실과 Si MOSFET과 GaN FET의 스위칭 손실 및 도통손실을 분석하여 최종적인 효율 및 동기정류의 필요성을 검증하고 그에 따른 방열설계를 수식을 통해 도출하여 제안한다.

  • PDF

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF