• Title/Summary/Keyword: Fuel supply facility

Search Result 53, Processing Time 0.026 seconds

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.

Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor (초고온가스로를 이용한 원자력수소생산 기술개발)

  • Kim, Yong-Wan;Kim, Eung-Seon;Lee, Ki-yooung;Kim, Min-hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.299-305
    • /
    • 2015
  • Nuclear hydrogen production technology is being developed for the future energy supply system. The sulfur-iodine thermo-chemical hydrogen production process directly splits water by using of the heat generated from very high temperature gas-cooled reactor, a typical Generation IV nuclear system. Nuclear hydrogen key technologies are composed of VHTR simulation technology at elevated temperature, computational tools, TRISO fuel, and sulfur iodine hydrogen production technology. Key technology for nuclear hydrogen production system were developed and demonstrated in a laboratory scale test facility. Technical challenges for the commercial hydrogen production system were discussed.

Safety Assessments for the IS(Iodine Sulfur) Process in a Hydrogen Production Facility (수소생산시설에서의 요오드-황 공정에 대한 안전성 평가연구)

  • Lee, Hyon-Woo;Jae, Moo-Sung;Cho, Nam-Chul;Yang, Jon-Eon;Lee, Won-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.54-58
    • /
    • 2009
  • A substitute energy development has been required due to the exhaust of the fossil fuel and an environmental problem. Consequently, possible technologies producing hydrogen from water that does not release carbon is a very promising technology. Also, Iodine-Sulfur(IS) thermochemical water decomposition is one of the promising processes that are used to produce hydrogen efficiently using the high temperature gas-cooled reactor(HTGR) as an energy source that is possible to supply heat over 900$^{\circ}C$. In this study, to make a initiating events identification for the IS process, Master Logic Diagram(MLD) is used and 9 initiating events that cause a leakage of the chemical material are identified. Also, 6 events are identified among 9 initiating events above and are quantified using event tree.

Vitrification of Simulated Combustible Dry Active Wastes in a Pilot Facility

  • Yang, Kyung-Hwa;Park, Seung-Chul;Lee, Kyung-Ho;Hwang, Tae-Won;Maeng, Sung-Jun;Shin, Sang-Woon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • In order to evaluate and finally optimize the vitrification condition for combustible dry active waste (DAW), dust and gas generation characteristics were investigated for PE, cellulose, and mixed waste Tests were conducted by varying the operation variables such as melter configuration, excess oxygen amount, and waste feeding rate. Results showed that dust generation characteristics were affected by the operation parameters and the melter's configuration is the dominant one. For all tested DAWs, dust generation was reduced by increasing the waste feeding rate and the excessive oxygen amount in the melter. Among waste types, dust amount was decreased by the order of mixed wastes, PE, and cellulose. Other parameters such as temperature variation and operation time have also affected the dust generation. The optimum condition for the DAW vitrification was determined as the melter's configuration equipped for minimizing the waste dispersion with 20 kg/h of waste feeding rate and 100% of excessive oxygen supply. CO gas concentration in the off-gas was immediately influenced by the combustion state in the melter, but showed similar trend as the dust generation. For the NOx production during the vitrification process, thermal NOx, which is generated from the Post Combustion Chamber (PCC), rather than fuel NOx was assumed to be dominant. The gas cleaning of efficiencies of the PCC, wet scrubber, and Selective Catalytic Reduction system (SCR) were found to be high enough to keep the concentration of pollutants (CO, NOx, SOx, HCI) in the stack below their relevant emission limits.

  • PDF

A Study on the Quantitative Risk Assessment of Mobile Hydrogen Refueling Station (이동식수소스테이션 정량적 위험성평가에 관한 연구)

  • KIM, DONG-HWAN;LEE, SU-MIN;JOE, CHOONG-HEE;KANG, SEUNG KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.605-613
    • /
    • 2020
  • In July and October of this year, the government announced the 'Green new deal plan within the Korean new deal policy' and 'Strategies for proliferation of future vehicles and market preoccupation'. And, in response to changes in the global climate agreement, it has decided to expand green mobility such as electric vehicles and hydrogen electric vehicles with the aim of a "net-zero" society. Accordingly, the goal is to build 310 hydrogen refueling stations along with the supply of 60,000 hydrogen vehicles in 2022, and the hydrogen infrastructure is being expanded. however, it is difficult to secure hydrogen infrastructure due to expensive construction costs and difficulty the selection of a site. In Korea, it is possible to build a mobile hydrogen station according to the safety standards covering special case of the Ministry of Industry. Since the mobile hydrogen station can be charged while moving between authorized place, it has the advantage of being able to meet a large number of demands with only one hydrogen refueling station, so it is proposed as a model suitable for the early market of hydrogen infrastructure. This study demonstrates the establishment of a hydrogen refueling station by deriving a virtual accident scenario for leakage and catastrupture for each facility for the risk factors in a mobile hydrogen station, and performing a quantitative risk assessment through the derived scenario. Through the virtual accident scenario, direction of demonstration and implications for the construction of a mobile hydrogen refueling station were derived.

RDF Gasification Using a Pilot-Scale Two-Stage Gasification System (파일럿 규모 2단 가스화 시스템 공정을 이용한 RDF 가스화)

  • Park, In-Hee;Park, Young-Kwon;Lee, Young-Man;Bae, Wookeun;Kwak, Yeon-Ho;Cheon, Kyeong-Ho;Park, Sung Hoon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.286-290
    • /
    • 2011
  • Syngas was produced out of pellet refuse derived fuel (RDF) produced from an RDF production facility of W city, Korea. A two-stage gasification system was developed to use the RDF char as an auxiliary heat source for gasification reaction. The composition and heating value of syngas as well as the heating value of residual product (char) were measured at a different residence time to investigate the optimal operating condition of the two-stage gasification system for syngas production. The optimal char residence time to minimize the energy cost due to an external heat source supply was also deduced.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

A Study on Design of Optimal Location for Renewable Energy Facility Using GIS (GIS를 사용한 재생에너지설비 최적 위치 설계에 관한 연구)

  • Jung, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Kim, Young-Gon;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.357-368
    • /
    • 2018
  • For well over 100 years, oil has enabled remote communities to generate electricity and enjoy the benefits of a consistent electrical supply. Relying solely on oil for electricity generation has left island and remote communities exposed to several risks and drawbacks. Oil-based electricity generation is often more expensive and subject to price volatility, which can result in the use of risky fuel hedging strategies. The residents of islands and remote communities express concern over the future impacts of climate change or insist on their opinions for the corresponding action with reduction of carbon emissions. These risks and drawbacks can be overcomed with continuing cost reductions in solar, wind, and energy storage technologies by maker. Reducing costs is not always a straightforward process, relying on more diversely and renewably arranged renewable energy sources led to reduced local construction cost in every situation reviewed in this study. In this paper, a convenient and simple design solution which will facilitate the optimum location and transmission route of renewable energy facility using GIS(Geographic Information System) is proposed. The suggested solutions exercised to the case of geomoon island using GIS and identified by local site survey.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.