Safety Assessments for the IS(Iodine Sulfur) Process in a Hydrogen Production Facility

수소생산시설에서의 요오드-황 공정에 대한 안전성 평가연구

  • Published : 2009.06.30

Abstract

A substitute energy development has been required due to the exhaust of the fossil fuel and an environmental problem. Consequently, possible technologies producing hydrogen from water that does not release carbon is a very promising technology. Also, Iodine-Sulfur(IS) thermochemical water decomposition is one of the promising processes that are used to produce hydrogen efficiently using the high temperature gas-cooled reactor(HTGR) as an energy source that is possible to supply heat over 900$^{\circ}C$. In this study, to make a initiating events identification for the IS process, Master Logic Diagram(MLD) is used and 9 initiating events that cause a leakage of the chemical material are identified. Also, 6 events are identified among 9 initiating events above and are quantified using event tree.

화석연료의 고갈과 환경문제로 인해 대체에너지 개발의 필요성이 대두되고 있다. 이에 거론되고 있는 대체에너지 중에서 물로부터 수소를 생산하는 기술은 탄소발생이 없는 매우 장래가 유망한 기술이다. IS 열화학적 물분해 공정은 거론되는 방법 중 매우 유망한 기술로 에너지원으로 900$^{\circ}C$ 이상의 열을 공급할 수 있는 고온가스냉각로(HTGR)를 시용하여 매우 능률적으로 수소를 생산할 수 있는 방법이다. 본 연구에서는 IS공정 의 초기사건을 도출하기 위해 주논리도(MLD)방법이 사용되어 화학물질의 유출을 야기할 수 있는 초기사건 9가지가 도출되었다. 또한 도출된 9가지 초기사건 중 6가지를 선정, 사건수목을 이용하여 정량화하였다.

Keywords

References

  1. M. Sakurai, H. Nakajima, K. Onuki, K. Ikenoya, S. Shimizu, 'Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process', International Journal of Hydrogen Energy, 24, pp. 603-612, 1999 https://doi.org/10.1016/S0360-3199(98)00119-0
  2. Gab-Jin Hwang, Kaoru Onuki, Mikihiro Nomura, Seiji Kasahara, Jong-Won Kim, 'Improvement of the thermochemical water-splitting IS(iodine - sulfur) process by electro-electrodialysis', Journal of Membrane Science, 220, pp. 129-136, 2003 https://doi.org/10.1016/S0376-7388(03)00224-2
  3. Makoto Sakurai, Hayato Nakajima, Rusli Amir, Kaoru Onuki, Saburo Shimizu, 'Experimental study on sidereaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process', International Journal of Hydrogen Energy, 25, pp. 613-619, 2000 https://doi.org/10.1016/S0360-3199(99)00074-9
  4. Shinji Kubo, Seiji Kasahara, Hiroyuki Okuda, Atsuhiko Terada, Nobuyuki Tanaka, Yoshitomo Inaba, Hirofumi Ohashi, Yoshiyuki Inagaki, Kaoru Onuki, Ryutaro Hino, 'A pilot test plan of the thermochemical water-splitting iodine-sulfur process', Nuclear Engineering and Design, 233, pp. 355-362, 2004 https://doi.org/10.1016/j.nucengdes.2004.08.018
  5. James C. Belke, 'Chemical accident risks in U.S. industry-A Preliminary analysis of accident risk data from U.S. hazardous chemical facilities', United Stats Envrionmental Protection Agency, 2000
  6. Akira Shimizu, Tetsuo Nishihara and Koichi Moriyama, 'Probabilistic Safety Assessment of Inflammabie Gas Leakage in the HTTR Hydrogen Production System', JAERI-Tech 2004-051,2004
  7. Nureg/CR-4550, Volume 1, Revision 1, SAND-2084, 'Analysis of Core Damage Frequency: Internal Events Methodology'
  8. IEEE Std 500-1984, 'IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing component, and Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations', 1984
  9. 'Reactor Safety Study - An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants. U. S. Nuclear Regulatory Commission Rep.', WASH-1400,1975
  10. Probabilistic Safety Assessment for Ulchin Units 5&6', Korea Hydro & Nuclear Power Co., Ltd. 2002
  11. Seok-Jung Han, 'Identification of Initiating Events Using the Master Logic Diagram in Low-Power and Shutdown PSA for Nuclear Power Plant', KAERI, pp. 35,2003