• Title/Summary/Keyword: Fuel side

Search Result 346, Processing Time 0.033 seconds

An Evaluation of Energy Quality for Distributed Powersystem (분산형 발전설비 병열운전 에너지 품질평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yoon, Gi-Gab;Rhim, Sang-Kyu;Choi, In-Kyu
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • As environmental friendly energy system, distributed micro gasturbine is focused on new energy source for overcoming brand new construction area of power generation. This distributed micro gasturbine system has the powerful characteristics as belows; 1) environmental friendly features NOx < 9 ppm, noise < 65 db 2) various fuel flexbility which is used such as natural gas, diesel, low calory new & renewable fuel, kerosene. 3) high specific output power based on small area and is avilable for very easy and compact installation. There are many new installation sites in USA and Japan from 1998. On the other hand the exhisting large power system was constructued by the sea side, this compact power system is now installed by enduser in downtown area and supplying combined heat & power, has the various apllication on-site power generation. In recently, there is the very important issue for new & reliablbe energy development and spreading out. This paper represent as belows for important system characteristics; 1) grid connection modeling 2) system operation characteristics 3) on-site operation result and evaluation output of power quality analysis.

Study of Failure Examples for Emission Gas Control System in Gasoline Engine (가솔린 엔진 배출가스 제어장치에 대한 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Lee, Young Suk;Youm, Kwang Wook;han, Jae Oh;Lim, Ha young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The purpose of this paper is to study for the emission gas control of passenger car. The first example, the PCSV never open when operating condition, but it opened by causing malfunction because of trouble. As a result, the purge gas entered into surge tank, a mount of fuel was displayed with excessive supply on tester. Therefore, it certified the bad-condition of the engine when idling by decreasing of fuel injection quantity from engine ECU. The second example, the hose activating a EGR valve didn't supply the vacuum pressure because of assembling the other part. Thus, it knew the bad-condition of engine that the EGR valve would not work normally by leaking with the other port. The third example, as the rear oxygen sensor of two sensor were fault-installing by changing the sensor of other a car it could not detect of oxygen quantity. Finally, it found the phenomenon of abruptly decreasing vehicle speed when braking a car. Therefore, the system including with emission control has to drastically manage by maximizing condition to role decreasing the emission gas.

Fire Examples Study of Intake and Exhaust System, Alternator Tuning and Inflow of Inflammables on Exhaust Part in a Car (자동차 흡배기장치, 발전기 튜닝 및 배기측 인화성 물질 유입에 관련된 화재사례 연구)

  • Lee, Il Kwon;Kook, Chang Ho;Suh, Moon Won;You, Chang Bae;Youm, Kwang Wook;Lim, Chun Moo;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.47-51
    • /
    • 2014
  • This paper is to analyze and study the fire examples in respect of intake and exhaust, alternator tuning and inflow of inflammables on exhaust part in a car. In the first example, the driver diverted the intake and exhaust system for tuning of a car. Stopping a car to rest for moment, the flammable styrofoam scrap go into exhaust pipe that installed with exhaust manifold newly. It certified the fact that catched fire gradually, furthermore enlarged the fire by leaking fuel. In the second example, the driver enlarged the generator performance to divert the audio system in side room., it knew the fact that the electric wiring connected with generator gave the cause of outbreak a fire by overheating. In the third example, the serviceman replaced the engine oil using funnel-shaped, he put the a bottle of plastic pat onto engine cover carelessly. Consequentially, it found the fire occurrence in the engine room. Therefore, the driver never divert the intake and exhaust and generator construction of a car abnormally. Also, repairing and inspecting a car, the serviceman have a care to not occur the fire by inflammables.

Numerical Study of Combustion Characteristics by Pressure and Oxygen Concentration in Counter-Flow Diffusion Flame Model (대향류 확산 화염 모델에서의 압력 및 산소분율에 따른 연소 특성 변화에 관한 수치해석 연구)

  • Park, Jinje;Lee, Youngjae
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.93-103
    • /
    • 2021
  • As the seriousness and necessity of responding to climate change and reducing carbon emissions increases, countries around the world are continuing their efforts to reduce greenhouse gases. Among various efforts, research on CCUS, capturing and utilizing carbon dioxide generated when using carbon-based fuels, is actively being conducted. Studies on pressurized oxy-fuel combustion (POFC) that can be used with CCUS are also being conducted by many researchers. The purpose of this study is to analyze basic information related to the flame structure and pollutant emissions of pressurized oxy-fuel combustion. For this, a counter-flow diffusion flame model was used to analyze the combustion characteristics according to pressure and oxygen concentration. As the pressure increased, the flame temperature increased and the flame thickness decreased due to a reaction rate improvement caused by the activation of the chemical reaction. As oxygen concentration increased, both the flame temperature and the flame thickness increased due to an improvement to the reaction rate and diffusion because of a change in oxidizer momentum. Analyzing the related heat release reaction by dividing it into three sections as the oxygen concentration increased showed that the chemical reaction from the oxidizer side was subdivided into two regions according to the mixture fraction. In addition, the emission index of NO classified according to the NO formation mechanism was analyzed. The formation trend of NO according to each analysis condition was presented.

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

Feasibility Study for Tidal Power Plant Site in Garolim Bay Using EFDC Model (EFDC모형을 이용한 가로림만의 조력발전 위치 타당성 검토)

  • Shin, Bum-Shick;Kim, Kyu-Han;Kim, Jong-Hyun;Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.489-495
    • /
    • 2011
  • Fossil fuel energy has become a worldwide environmental issue due to its effect on global warming and depletion in its supply. Therefore, the interest in developing alternative energy source has been rising. Ocean energy, especially, has gained strength as an alternative energy source for its unlimited supply with low secondary risks. Among all the ocean energy, the west coast of Korea holds the field of large-scale energy development because of its distinctive tidal range. Tidal power plant construction at the sea may expedite multi development effects such as bridge roles, tourism resource effects and adjustability of flood inundation at the inner bay. This study introduces the validity of tidal power plant construction at Garilim Bay in west coast of Korea by examining anticipated hydraulic characteristics using EFDC model. Through EFDC numerical simulations, the feasibility of Garolim Bay as a tidal power plant field has been proved. And the most effective tidal power plant construction would be to install hydraulic turbine in the west side of bay entrance where ebb current is stronger, and install water gate in the east side of bay entrance where the flood current is superior.

Hydraulic Experiment for Pollutant Discharge Characteristics in a Wolseong Nuclear Power Plant Port (월성원자력발전소의 항내 오염물 유출 특성에 관한 수리실험)

  • Yang, Byung-Mo;Min, Byung-Il;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.113-122
    • /
    • 2016
  • In this study, the dispersion process of pollutant substances in a port under wave and current environments was evaluated by a hydraulic experiment. Once the contaminants washed ashore into the port of Wolseong nuclear power plant, transport processes of pollutants were investigated by tracking the tracer according to the variations of experimental condition through a hydraulic experiment. Several hydraulic experiments were performed to analyze the pollutant discharge rate of the surface coming from the different coastal environments. From the hydraulic experiment results, the tracer concentration decreased exponentially. These results suggested that, after the tracer was transported to the open sea, a different gradient was shown under different conditions. For the case of a diluted condition, the half-life of flow rate was 2.70, 10.40, and 26.39 days for 30, 20 and 10 rpm in the left-side, respectively. The decrease of the tracer concentration under conditions of 30 rpm was much faster than that under conditions of 10 rpm. For the wave condition, the half-life of flow rate was 4.59 and 15.35 days for the right and left side of the port in a hydraulic scale prototype, respectively.

Experimental Study on the Heating Performances of the Air Heater with Diesel for Passenger Cabin Heating of an Electric Vehicle (전기자동차용 승차공간 난방용 디젤 공기 히터의 실차 성능에 관한 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7250-7255
    • /
    • 2015
  • The objective of this study is to experimentally investigate the heating performances of the portable air combustion heater using diesel fuel for auxiliary cabin heating of the battery electric vehicle. In order to evaluate the heating performances of the air combustion heater, the heating capacity was calculated by the temperature at inlet and outlet parts of the considered heater and the inner temperature distribution characteristics of the vehicle were measured during 1600 seconds with an interval of 1 second. The theoretical efficiency of the tested heater was calculated by temperature data of the air of supplying and exhausting to the cabin. As the air passed the heat-sink, the air temperature at the end of heat-sink reached to $101.3^{\circ}C$ and the difference of temperature on heat-sink was 67.8%. The average heating capacity of the air combustion heater showed 2.0 kW. After 1800 seconds, the inner temperature of the vehicle cabin was continuously increased. The temperatures of the top side and the bottom side of the car cabin under consideration were increased upto $42.5^{\circ}C$ and $24.3^{\circ}C$, respectively, and the theoretical efficiency of the tested heater was on average 63.7%.

Strength Analysis and Standardization for Closed Chocks by Using the Finite Elements Method (유한요소법을 이용한 클로즈드 초크의 구조검증 및 표준화에 대한 연구)

  • Jung, Jae-Wook;Lee, Byung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.132-145
    • /
    • 2012
  • Mooring fittings mean various devices and fittings to safely fasten vessels to quays, jetties and sea-floating buoys, etc. They include mooing winches, capstans, chocks, fairleads, guide rollers, bollards, and bitts. Not only the seats and reinforced parts for the installation of fittings but also ropes and chains for mooring and chain stoppers can be also considered. Because of damages to mooring fittings during mooring directly related to large-scale accidents such as the drifting of vessels, mooring fittings with strength appropriate for the physical features of the vessels must be installed. The reinforcement of the vessels on which the mooring fittings are installed must be designed to withstand the loads transferred from the fittings as well. Also mooring fittings with efficient strength should be required because damaged ships lead to sea pollution such as oil or fuel oil spillage. This study has been performed by the Finite Element Method for two aspects of closed chocks which are divided into structure-supporting shapes and working load. In the case of structure-supporting shapes, they have been performed in the field of sheet and bulwark. As for working load, it has been analyzed according to working load direction such as chock's side and below. At first, strength analysis for unique closed chocks has been carried out by using the Finite Element Method, they are applied for the situation when vessels pass by the panama canal. And then the experiment has been done to verify the analyzed date obtained by FEM. The experimental results were found to be similar to the numerical results with up to 16% difference. On the basis of the results obtained, standardization has been carried out by the Finite Element Method for various sizes of closed chocks.