DOI QR코드

DOI QR Code

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack

수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구

  • Received : 2009.12.31
  • Accepted : 2010.06.26
  • Published : 2010.08.01

Abstract

In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

수동공기공급형 고분자 전해질 연료전지는 팬을 이용하여 주변의 공기를 스택에 공급한다. 공급된 공기는 연료로 쓰이는 동시에 스택의 냉각에도 사용된다. 이러한 방식은 시스템에서 가습기, 공기 압축기, 냉각수 설비를 제거할 수 있어서 시스템을 단순화 시키고 경량화 시킬 수 있는 반면 냉각성능은 기존의 냉각수를 이용하는 방식에 비하여 떨어진다. 따라서 시스템의 신뢰성 확보를 위하여 최적의 냉각 성능을 낼 수 있도록 스택을 설계하는 것이 중요하다. 본 연구에서는 고분자 전해질 연료전지 스택의 냉각성능 향상을 위하여 다양한 채널 형상, 공기극의 유량분포, 외부 대류열전달계수의 변화가 스택의 온도분포에 미치는 영향에 대한 전산해석을 수행하였다. 그 결과, 채널의 rib이 두꺼운 경우에 냉각성능이 가장 뛰어났으며 유량을 중앙부에 집중시킨 경우에 고온집중 현상이 감소하였다.

Keywords

References

  1. Ying, W., Ke, J., Lee, W. Y., Yang, T. H. and Kim, C. S., 2005, "Effects of Cathode Channel Configurations on the Performance of an Air-breathing PEMFC," Int. J. Hydrogen Energy, Vol. 30, pp. 1351-1361. https://doi.org/10.1016/j.ijhydene.2005.04.009
  2. Adzakpa, K. P., Ramousse, J., Dube, Y., Akremi, H., Agbossou, K., Dostie, Poulin, A. and Fournier, M., 2008, "Transient Air Cooling Thermal Modeling of a PEM Fuel Cell," J. Power Sources, Vol. 179, pp. 164-176. https://doi.org/10.1016/j.jpowsour.2007.12.102
  3. Ying, W., Sohn, Y. J., Lee, W. Y., Ke, J., and Kim, C. S., 2005, "Three-dimensional Modeling and Experimental Investigation for an Air-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC)," J. Power Sources, Vol. 145, pp. 563-571. https://doi.org/10.1016/j.jpowsour.2005.01.083
  4. Ju, H. C., 2008, "Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs)(I)," Trans. of the KSME(B), Vol. 32, No. 9, pp. 683-694. https://doi.org/10.3795/KSME-B.2008.32.9.683
  5. Kim, Y. H., Lee, Y. T., Lee, K. J., Kim, Y. C., Choi, J. M. and Ko, J. M., 2007, "Numerical Simulation on Cooling Plates in a Fuel Cell," Journal of SAREK, Vol. 19, No. 1 pp. 86-93.
  6. Sohn, Y. J., Park, G. G., Yang, T. H., Yoon, Y. G., Lee, W. Y., Yim, D. S. and Kim, C. S., 2005, "Operating Characteristics of an Air-cooling PEMFC for Portable Applications," J. Power Sources, Vol. 145, pp. 604-609. https://doi.org/10.1016/j.jpowsour.2005.02.062
  7. Wang, Y. and Ouyang, M., 2006, "Three Dimensional Heat and Mass Transfer Analysis in an Air-breathing Proton Exchange Membrane Fuel Cell," J. Power Sources, Vol. 164, pp. 721-729.
  8. Bussayajarn, N., Ming, H., Hoong, K., Stephen, W. and Hwa, C., 2009, "Planar Air Breathing PEMFC with Self-humidifying MEA and Open Cathode Geometry Design for Portable Applications," Int. J. Hydrogen Energy, Vol. 34, pp. 7761-7767. https://doi.org/10.1016/j.ijhydene.2009.07.077
  9. Barbir, F. 2005, PEM Fuel Cells: Theory and Practice, ELSEVIER, Burlington, pp. 178-197.