• Title/Summary/Keyword: Fuel economy test

Search Result 163, Processing Time 0.022 seconds

The Change Rate of Fuel Consumption for Different IRI of Paved Roads (포장도로의 거칠기 변화에 대한 차량 연료소모량 변화율)

  • Ko, Kwang-H.
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.55-59
    • /
    • 2010
  • High VOC(Vehicle Operating Cost) is the main reason for the rehabilitation of paved road and VOC is composed of fuel consumption, lubricant oil consumption, parts consumption, etc. Fuel consumption is one of the largest components of VOC and the roughness of road represents the deterioration level of the road. For these reasons, the fuel consumption is measured for different IRI(International Roughness Index) in this study. The fuel consumption was measured by processing the voltage signal of fuel injector of vehicle and the speed was measured with GPS. The change rate of fuel consumption for different IRI can be calculated with the results of this test. It's concluded that fuel consumption(L/100km) of medium and large passenger car increases 7 times fast of the increase of IRI(m/km) around 3.5m/km in the speed range of 40 ~ 100km/h, and fuel consumption is the best at 60km/h.

LEAN-BURN ENGINE - POTENTIAL ANALYSIS

  • Kowalewicz, A.
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.147-155
    • /
    • 2001
  • Analysis of the thermodynamic cycle of IC engine from the point of view of economy and emissions was carried out. From this analysis potential capability of engine development was derived. This potential capability is lean-burn engine, fuelled with homogeneous mixture with $\lambda \geq$ 1.4. Several different modes of fuelling were proposed and tested on one-cylinder test engine from the point of view of extending lean operating limit of the engine, emissions and fuel economy. Among them were: fuelling with evaporated preheated gasoline, with gas (LPG evaporated) and with liquid butane. From these modes, fuelling with liquid butane injected to inlet port was selected and finally tested. This novel system of fuelling offered better than standard engine performances and emissions at lean operating limit. These results were validated on full-scale two-cylinder engine.

  • PDF

Effects of Base Oils on Performance of Automatic Transmission Fluid (윤활기유가 자동변속기유의 성능에 미치는 영향)

  • 문우식;양시원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.273-279
    • /
    • 2000
  • Until recently performance requirements for automatic transmission fluids have continued to change to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve the fuel economy and easy driving. To meet recent performance requirements fur automatic transmission the needs for special base oils Bike API Group III and IV base oils become larger. In this paper to evaluate the effects of base oils on performance of automatic transmission fluids formulated with API Group I,II,III and IV and Dexron III and Hereon Type additive package, Brookfield viscosity, oxidation test, SAE No.2 friction test and seal compatibility test were examined. From the test we knew that the use of Croup III and IV base oils in ATF has several benefits in low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF

[ $SRV^{(R)}$ ]-Testing of the Tribosystem Piston Ring and Cylinder Liner Outside the Engine

  • Woydt Mathias;Ebrecht Johannes
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.58-64
    • /
    • 2005
  • An OEM driven working group started in January 2004 to elaborate the philosophies, concepts and test procedures for testing piston ring and cylinder liner materials as well as engine oils outside the engine using the $SRV^{(R)}$ test equipment. The different $SRV^{(R)}$ test philosophies in use by OEMs are compiled. The working group focuses on a.) ASTM sequence VIB (Fuel economy by aging oils), b.) friction and wear in the top dead region under mixed/boundary lubrication, c.) extreme pressure load under mixed/boundary lubrication and d.) hydrodynamic friction. Tribological test result and precision data are presented.

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Fuel Consumption and CO2 Characteristics of HCNG Bus (HCNG 버스의 연비와 CO2 배출특성)

  • Han, JO;Kim, YC;Lee, YC
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.20-25
    • /
    • 2017
  • For the HCNG bus using fuel which is the mixture gas of hydrogen and natural gas, the fuel efficiency and $CO_2$ emission characteristics were analyzed based on the WHVC test results and compared with that of the CNG and diesel buses. $CO_2$ emission characteristics were also analyzed by contribution effects such as carbon emission factor and fuel consumption. As a result, the fuel economy of HCNG bus was evaluated to be 11.5% improvement compared to CNG bus, and it was also showed equivalent to diesel bus. In addition, the $CO_2$ emission of HCNG bus was reduced 20.4% and 34.5% compared to CNG bus and diesel bus respectively. It was concluded that the $CO_2$ emission characteristics were influenced by the carbon emission factor depending on fuel composition and the fuel consumption according to the engine performance.

Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Chon, Mun Soo;Park, Jung-Kwon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

Experimental Study on Fuel Consumptions of LPG Vehicle Depending on the Atmospheric Temperature, Vaporizer Gas Leakage, Engine Oil and Engine Loads (대기온도, 증발기 누출, 엔진오일 및 엔진부하에 따른 LPG 차량의 연비실험에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents the fuel consumption effects of LPG vehicle depending on the atmospheric temperature, LP gas leakage of vaporizer, viscosity of engine oil and engine load conditions. The fuel consumption test results show that when the temperature of engine temperature rises, the fuel consumption efficiency increases in general. The fuel consumption efficiency for an atmosphere temperature of $24.2^{\circ}C$ is 13.6% high compared to that of $1^{\circ}C$. No leak vaporizer on fuel consumption efficiency is 5.3% high compared to that of the LP gas leak vaporizer. The fuel economy of new engine oils is just 1.1% high compared to that of used oils with a LPG vehicle mileage of 9,500km. This is not an influential factor compared with an atmospheric temperature and a LP gas leakage. The more important factors on the fuel consumption efficiency are driving conditions such as a rapid braking, abrupt start and fast acceleration. The test results indicate that the normal start is 32.3% high compared to that of an abrupt start and the fast acceleration is 10.8% high compared with that of an abrupt start. And the fuel consumption efficiency for a rapid braking is 18.3% higher than that of an abrupt start. These indicate that the driving condition is very important to reduce the fuel consumption rate.

  • PDF

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

A Study on Reliability Compliance Test based on Thermal Fatigue Accelerated Test for CVVL BLDC Motor (CVVL BLDC 모터의 열피로 가속시험을 통한 수명보증시험 설계)

  • Lee, San-Hoon;Park, Sang-Wook;Kim, Min-Geiun;Seon, Han-Geol;Hong, Sung Ryeul;Han, Man-Seung
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Purpose : The demand for higher fuel economy vehicles has helped develop fuel-efficient vehicles such as a CVVL called continuous variable valve lift. Existing CVVL has been applying DC type motor to control intake valve, but recently some car parts manufacturers have been developing a BLDC type CVVL motor for improvements of endurance performance. The purpose of this study is to find the potential failure mechanism of the CVVL BLDC moto in early stage of development based on the design properties and design the accelerated life test model. Methods : CVVL BLDC is consist of brushs, coil, magnetic, PCB, bearing and so on. Each component has a latent failure mechanism caused by temperature, humidity, vibration. By analysis result of the failure mechanism, thermal fatigue is the most important factor of a durability of CVVL BLDC motor. So, we designed a new accelerated life test model for guarantee of the CVVL BLDC motor. Results : A crack occurred on via hole in test using the conditions we designed, so we did change the design to avoid this failure. The via hole dimension is changed a little larger, as a result we achieve improvements in reliability of the CVVL BLDC motor. By applying various kinds and extreme level of stresses, we can find the operating limits of products. Conclusion : In thesis, We analyzed the failure mechanism of CVVL BLDC and designed an accelerated life test method to give a guarantee for reliability. Based on the test results, we could improve the reliability of developments by change of design.