• Title/Summary/Keyword: Fuel cells

Search Result 1,452, Processing Time 0.032 seconds

A Study on the Hybrid Arc Extinguishing Mechanism of the DC Circuit Breaker (DC 차단기의 하이브리드 아크 소호 기법에 관한 연구)

  • Joo, Nam-Kyu;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • Digital load is increasing suddenly for various reasons, such as easy control and management. Accordingly, a consumption pattern of load is becoming DC. However, the power supply is supplied by AC power. The load power supply substantially needs DC power. AC power has to be converted to DC power. Renewable energy sources like solar, wind and fuel cells are DC power generation, but the transfer needs to through by AC power, thus DC power has to be converted to AC power. Resultantly, a multi-stage conversion loss is constantly increasing. The power distribution system of DC-based is required for effective use of these energy sources. This requires a DC load, as well as is necessary to develop DC breaker. This study is expect for system and equipment for reliable DC power distribution through the study of the arc extinguish technology for direct current a hybrid arc extinguishing technology with permanent magnets technology.

Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC (PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향)

  • Oh, Sohyung;Lim, Dae Hyun;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.524-529
    • /
    • 2020
  • To increase the mechanical durability of the proton exchange membrane fuel cells, a reinforced membrane in which a support is placed in the polymer membrane is used. The support mainly uses e-PTFE, which is hydrophobic and does not transfer ions, which may cause performance degradation. In this study, we investigated the effect of e-PTFE support on PEMFC performance and electrochemical durability. In this study, the reinforced membrane with the support was compared with the single membrane (non-reinforced membrane). Due to the hydrophobicity of the support, the water diffusion coefficient of the reinforced membrane was lower than that of the single membrane. The reinforced membrane had a lower water diffusion coefficient, resulting in higher HFR, which is the membrane migration resistance of ions, than that of a single membrane. Due to the low hydrogen permeability of the support, the OCV of the reinforced membrane was higher than that of the single membrane. The support was shown to reduce the hydrogen permeability, thereby reducing the rate of radical generation, thereby improving the electrochemical durability of the reinforced membrane.

Initiating Events Study of the First Extraction Cycle Process in a Model Reprocessing Plant

  • Wang, Renze;Zhang, Jiangang;Zhuang, Dajie;Feng, Zongyang
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.117-121
    • /
    • 2016
  • Background: Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Materials and Methods: Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. Results and Discussion: The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. Conclusion: The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun;Jeong, Juwon;Manivannan, Shanmugam;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.273-281
    • /
    • 2020
  • Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

Three-Phase Interleaved Isolated High Efficiency Boost Converter (인터리브 방식 삼상 절연형 고효율 부스트 컨버터)

  • Choi, Jung-Wan;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.496-503
    • /
    • 2009
  • In this paper, a new three-phase interleaved isolated high efficiency boost dc-dc converter with active clamp is proposed. The converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Further, interleaved operation of three-phase boost converter reduces overall ripple current, which is imposed into fuel cells and realizes smaller sized filter components, increasing effective operating frequency and leading to higher power density. Each output current of three-phase boost converter is combined by the three-phase transformer and flows in the continuous conduction mode by the proposed three-phase PWM strategy. An efficiency of above 96% is mainly achieved by reducing conduction losses and switching losses are reduced by the action of active clamp branches, as well. The proposed converter and three-phase PWM strategy are analyzed, simulated and implemented in hardware. Experimental results are obtained on a 500 W prototype unit, with all of the design verified and analyzed.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Protective Coatings for Application of Fe-l6Cr Ferritic Alloy as an Interconnector in SOFCs (고체산화물 연료전지용 금속접속자로의 적용을 위한 Fe-16Cr 페라이트 합금의 내산화막 코팅)

  • 이용진;김상우;김긍호;이종호;안진호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2003
  • We studied oxidation behaviors of anti-oxidative Y-Cr oxide coated sol on ferritic steel for application of the Fe-Cr alloys as interconnectors of planar-type Solid Oxide Fuel Cells(SOFCs). In coated$YCrO_3$on the ferritic steel, the phases of $YCrO_3$,$Cr_2O_3$and $Mn_{1.5}Cr_{1.5}O_4$on the coated surface were detected, but iron base scales were not observed after oxidation at 80$0^{\circ}C$ for 40 h. The Mn-Cr oxide scales were grown with oxidation by diffusing components in the ferritic steel from inner. The Log(ASR/T) value that expresses electrical resistance of coated$YCrO_3$on the ferritic steel was -4.57~$-4.70{omega}cm^2K^{-1}$, lower in comparison with the one of the uncoated ferritic steel,$-3.99{omega}cm^2K^{-1}$. This indicates the applicability of Fe-l6Cr alloy as interconnector materials for SOFCs.

Experimental Study on Cellular Instabilities in Diluted Syngas-Air Premixed Flames (희석제가 첨가된 합성가스-공기 예혼합화염에 있어서 셀 불안정성에 관한 실험적 연구)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kim, Jeong-Soo;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.72-83
    • /
    • 2010
  • Experiments were conducted to investigate the effects of added diluents (carbon dioxide, nitrogen, and helium) on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Laminar burning velocities and Markstein lengths were measured by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed.

Hydrogen storage of multiwall carbon nanotube decorated with bimetallic Pt-Pd nano catalysts using thermal vapor deposition (Pt 및 Pd 2금속 나노촉매를 증착한 탄소나노튜브의 수소저장특성 연구)

  • Hwang, Sang-Woon;So, Chang-Su;Naik, Mehraj-Ud-Din;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In present work, we study the hydrogen storage of MWNT decorated with bimetallic Pt and Pd nanosize catalysts by Thermal Vapor Deposition [TVD]. The size of Pt and Pd particles is controlled as 5nm, 3nm, respectively by TVD. Before hydrogen storage measurement, the sample was heated for 1hr at $200^{\circ}C$ in H2 atmosphere. The Hydrogen sto rage of the sample was performed at room temperature and 33~34atm. The hydrogen storage of this composite showed 3.2wt% at 298K and 34atm, for three times. At 4th cycle, hydrogen storage is decreased to 1.5wt%, owing to the aggregation of bimetallic Pt and Pd nano particles.

Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method (Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Lee, Mi-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF