• 제목/요약/키워드: Fuel cell generation

검색결과 526건 처리시간 0.025초

가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터 (Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System)

  • 정상민;배영상;유태식;김효성;최세완
    • 전력전자학회논문지
    • /
    • 제12권1호
    • /
    • pp.81-88
    • /
    • 2007
  • 본 논문에서는 연료전지를 이용한 가정용 발전 시스템의 계통 연계를 위한 새로운 단상 인버터 시스템을 제안한다. 제안한 인버터는 계통연계 운전과 독립 운전이 모두 가능하고 두 운전사이의 모드전환이 자동으로 이루어지며 전환시 최소의 과도상태를 갖는다. 제안한 제어방식은 정상상태 오차가 거의 없고 양호한 과도상태 응답특성을 가진다. 또한 연산량과 센서수가 적고 구조가 간단하여 저가격의 고정소수점 DSP로도 구현이 가능한 특징이 있다. 제안한 계통연계형 인버터의 제어기에 관하여 기술하고 모의실험 및 실험에 의하여 그 타당성을 입증한다.

암모니아 활용 고체산화물 연료전지 발전시스템의 엑서지 분석 (Exergetic Analysis of Ammonia-fueled Solid Oxide Fuel Cell Systems for Power Generation)

  • 쿠엔;배용균;안국영;이선엽;김영상
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.27-34
    • /
    • 2023
  • 고체 산화물 연료전지의 연료로 암모니아를 사용하는 것은 고효율, 환경 친화성, 보관 및 운송의 용이성으로 인해 주목받고 있다. 암모니아 활용 SOFC 시스템의 효율을 더욱 높이려면 시스템의 비효율적인 구성 요소를 이해해야 하며 이를 위해 엑서지 분석을 수행하였다.본 연구에서는 단순 연료전지 시스템(FC), 연료극 재순환 시스템(RC-FC) 및 수분 제거 재순환 시스템(RC-WR-FC)의 세 가지 시스템에 대해 엑서지 분석을 수행하였다. FC, RC-FC 및 RC-WR-FC의 엑서지 효율은 각각 48.7%, 51.6% 및 58.4%이었으며, 세 시스템 모두에서 SOFC 스택은 엑서지 파괴의 주요 원인이었다. 또한 버너, 공기 열 교환기 및 냉각기/응축기와 같이 낮은 효율을 가진 부품들을 재구성한다면 효율을 높일 수 있다.

Aspen Plus 프로그램에 의한 장갑차량용 고온고분자전해질 연료전지 기반 보조전원장치 성능 시뮬레이션 분석 (Analysis for Performance of the HT-PEFC based Auxiliary Power Unit by Aspen Plus Software)

  • 유민규;박지일;권혁상
    • 한국군사과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.211-217
    • /
    • 2016
  • The fuel cell based auxiliary power unit (APU) is promising for power source of armed vehicles due to its silence and high efficiency. Especially, the on board hydrogen generation and fed to fuel cell system was core technology of this power system. In this study, we analyzed the performance of the Auto thermal reactor (ATR) that produce the hydrogen from the fuel, integrated High temperature polymer electrolyte fuel cell (HT-PEFC) by Aspen plus software. The fuel was designed as a n-dodecane for analysis of military fuel (JP-8).

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

연료전지 자동차 열방출 시스템의 설계 (Design of a Heat Release System for Fuel Cell Vehicles)

  • 김성철;박민수;정승훈;윤석호;김민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

바이오가스 연료기반 연료전지발전 기술동향 (Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel)

  • 이종규;전재호;이종연
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

투싼 연료전지 하이브리드 차량 개발 (Development of Tucson Fuel Cell Hybrid Electric Vehicle)

  • 전순일;최서호;권순우;이규일;정성진;윤성곤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.357-360
    • /
    • 2005
  • Hyundai Motor Company developed the second generation of fuel cell hybrid electric vehicle based on Tucson SUV in 2004. This vehicle has cold start capability below -10C and its driving performances including maximum speed and accelerating time are almost similar to conventional Tucson SUV's performances without any sacrifice in terms of cabin space. Especially. the cold start capability was realized by utilizing only internal power sources such as fuel cell power and high voltage lithium ion polymer battery. In this paper, we will briefly introduce specifications of Tucson FCEV and its driving performances based on field test and simulations.

  • PDF

대용량 연료전지 시스템의 병렬운전을 위한 전력변환기 제어 알고리즘 개발 (Development of Power Conditioning System Control Algorithm for the Parallel Operation of High-Power Fuel Cell System)

  • 이진희;백승택;최준영;서인영;김도형;임희천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2008
  • This paper proposes the parallel operation control algorithm of a power conditioning system (PCS) for a distributed Fuel Cell power generation system. A proposed control algorithm is made good a drawback of the conventional control algorithm. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. Simulation results are presented to performance of a proposed control algorithm for the PCS.

  • PDF

250kW급 MCFC 연료전지 시스템용 공기공급장치 개발 (Development of an Air Supply System in 250 kW MCFC Fuel Cell System)

  • 박준영;황순찬;박무룡;김영철;안국영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF