DOI QR코드

DOI QR Code

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Sunghyun Uhm (Hydrogen Energy Solution Center, Institute for Advanced Engineering)
  • Received : 2023.02.27
  • Accepted : 2023.03.20
  • Published : 2023.06.10

Abstract

This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) and Korea Smart Farm R&D Foundation(KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and Ministry of Science and ICT(MSIT), Rural Development Administration(RDA) (421037033HD020).

References

  1. I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12, 463-491 (2019). https://doi.org/10.1039/C8EE01157E
  2. A. Ajanovic, and R. Haas, Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector, Int. J. Hydrog. Energy, 46, 10049-10058 (2021). https://doi.org/10.1016/j.ijhydene.2020.03.122
  3. J. D. Fonseca, M. Camargo, J.-M. Commenge, L. Falk, and I. D. Gil, Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review, Int. J. Hydrog. Energy, 44, 9486-9504 (2019). https://doi.org/10.1016/j.ijhydene.2018.09.177
  4. H. Lund, Renewable energy strategies for sustainable development, Energy, 32, 912-919 (2007). https://doi.org/10.1016/j.energy.2006.10.017
  5. S. Mekhilef, R. Saidur, and A. Safari, Comparative study of different fuel cell technologies, Renew. Sustain. Energy Rev., 16, 981-989 (2012). https://doi.org/10.1016/j.rser.2011.09.020
  6. V. Spallina, P. Nocerino, M. C. Romano, M. van Sint Annaland, S. Campanari, and F. Gallucci, Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production, Int. J. Greenh. Gas Control., 71, 9-19 (2018). https://doi.org/10.1016/j.ijggc.2018.02.005
  7. S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ion., 135, 305-313 (2000). https://doi.org/10.1016/S0167-2738(00)00452-5
  8. N. Q. Minh, Solid oxide fuel cell technology-features and applications, Solid State Ion., 174, 271-277 (2004). https://doi.org/10.1016/j.ssi.2004.07.042
  9. R. O'hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed., John Wiley & Sons, New Jersey, USA (2016).
  10. S. A. Saadabadi, B. Illathukandy, and P. V. Aravind, Direct internal methane reforming in biogas fuelled solid oxide fuel cell; The influence of operating parameters, Energy Sci. Eng., 9, 1232-1248 (2021). https://doi.org/10.1002/ese3.887
  11. N. Shi, Y. Xie, Y. Yang, S. Xue, X. Li, K. Zhu, D. Huan, R. Peng, C. Xia, and Y. Lu, Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability, Mater. Renew. Sustain. Energy, 9, 1-18 (2020). https://doi.org/10.1007/s40243-019-0161-0
  12. J. Ma, C. Jiang, P. A. Connor, M. Cassidy, and J. T. Irvine, Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels, J. Mater. Chem. A, 3, 19068-19076 (2015). https://doi.org/10.1039/C5TA06421J
  13. L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou, and F. Liang, Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrog. Energy, 44, 31275-31304 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.220
  14. H. Kim, Y. S. Chung, T. Kim, H. Yoon, J. G. Sung, H. K. Jung, W. B. Kim, L. B. Sammes, and J. S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia, Solid State Ion., 339, 115010 (2019).
  15. X. M. Ge, S. H. Chan, Q. L. Liu, and Q. Sun, Solid oxide fuel cell anode materials for direct hydrocarbon utilization, Adv. Energy Mater., 2, 1156-1181 (2012). https://doi.org/10.1002/aenm.201200342
  16. S. Tao, and J. T. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nat. Mater., 2, 320-323 (2003). https://doi.org/10.1038/nmat871
  17. P. Vernoux, M. Guillodo, J. Fouletier, and A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ion., 135, 425-431 (2000). https://doi.org/10.1016/S0167-2738(00)00390-8
  18. N. Danilovic, A. Vincent, J.-L. Luo, K. T. Chuang, R. Hui, and A. R. Sanger, Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3-δ (X=Ti, Mn, Fe, Co), Chem. Mater., 22, 957-965 (2010). https://doi.org/10.1021/cm901875u
  19. S. McIntosh, and M. Van den Bossche, Influence of lattice oxygen stoichiometry on the mechanism of methane oxidation in SOFC anodes, Solid State Ion., 192, 453-457 (2011). https://doi.org/10.1016/j.ssi.2010.07.019
  20. C. Aliotta, L. Liotta, F. Deganello, V. La Parola, and A. Martorana, Direct methane oxidation on La1-xSrxCr1-yFeyO3-δ perovskitetype oxides as potential anode for intermediate temperature solid oxide fuel cells, Appl. Catal. B: Environ., 180, 424-433 (2016). https://doi.org/10.1016/j.apcatb.2015.06.012
  21. Y. Liu, S. Wang, J. Qian, X. Xin, Z. Zhan, and T. Wen, A novel catalytic layer material for direct dry methane solid oxide fuel cell, Int. J. Hydrog. Energy, 38, 14053-14059 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.023
  22. F. Liu, L. Zhang, G. Huang, B. Niu, X. Li, L. Wang, J. Zhao, and Y. Jin, High performance ferrite-based anode La0.5Sr0.5Fe0.9Mo0.1O3-δ for intermediate-temperature solid oxide fuel cell, Electrochim. Acta, 255, 118-126 (2017). https://doi.org/10.1016/j.electacta.2017.09.157
  23. X. Zhou, N. Yan, K. T. Chuang, and J. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells, RSC Adv., 4, 118-131 (2014). https://doi.org/10.1039/C3RA42666A
  24. K. B. Yoo, B. H. Park, and G. M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel, Solid State Ion., 225, 104-107 (2012). https://doi.org/10.1016/j.ssi.2012.05.017
  25. S. Sengodan, S. Choi, A. Jun, T. H. Shin, Y.-W. Ju, H. Y. Jeong, J. Shin, J. T. Irvine, and G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells, Nat. Mater., 14, 205-209 (2015). https://doi.org/10.1038/nmat4166
  26. R. Dass, J.-Q. Yan, and J. Goodenough, Oxygen stoichiometry, ferromagnetism, and transport properties of La2-x NiMnO6+δ, Phys. Rev. B, 68, 064415 (2003).
  27. M. K. Rath, and K.-T. Lee, Characterization of novel Ba2LnMoO6 (Ln= Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells, J. Alloys Compd., 737, 152-159 (2018). https://doi.org/10.1016/j.jallcom.2017.12.090
  28. Y.-H. Huang, R. I. Dass, Z.-L. Xing, and J. B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells, Science, 312, 254-257 (2006). https://doi.org/10.1126/science.1125877
  29. P. Zhang, Y.-H. Huang, J.-G. Cheng, Z.-Q. Mao, and J. B. Goodenough, Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels, J. Power Sources, 196, 1738-1743 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.007
  30. N. Yu, T. Liu, X. Chen, M. Miao, M. Ni, and Y. Wang, Co-generation of liquid chemicals and electricity over Co-Fe alloy/perovskite anode catalyst in a propane fueled solid oxide fuel cell, Sep. Purif. Technol., 291, 120890 (2022).
  31. K.-Y. Lai, and A. Manthiram, Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells, Chem. Mater., 30, 2515-2525 (2018). https://doi.org/10.1021/acs.chemmater.7b04569
  32. D. E. Fowler, A. C. Messner, E. C. Miller, B. W. Slone, S. A. Barnett, and K. R. Poeppelmeier, Decreasing the polarization resistance of (La, Sr) CrO3-δ solid oxide fuel cell anodes by combined Fe and Ru substitution, Chem. Mater., 27, 3683-3693 (2015). https://doi.org/10.1021/acs.chemmater.5b00622
  33. M. Qin, Y. Xiao, H. Yang, T. Tan, Z. Wang, X. Fan, and C. Yang, Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution, Appl. Catal. B: Environ., 299, 120613 (2021).
  34. M. Wu, H. Yu, J. Ni, and C. Ni, Coke-resistant ferrite anode decorated with in-situ exsolved ceria for carbonaceous fuel oxidation, J. Power Sources, 552, 232266 (2022).
  35. M. L. Faro, D. La Rosa, I. Nicotera, V. Antonucci, and A. S. Arico, Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni-perovskite anode catalyst, Appl. Catal. B: Environ., 89, 49-57 (2009). https://doi.org/10.1016/j.apcatb.2008.11.019
  36. K.-H. Huang, and J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, M.Sc. Thesis, National Tsing Hua University, Hsinchu, China (1996).
  37. B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., 375, 213-218 (2004).
  38. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299-303 (2004). https://doi.org/10.1002/adem.200300567
  39. S. Senthil Kumar, and S. T. Aruna, Hydrocarbon compatible sofc anode catalysts and their syntheses: A review, Sustain. Chem., 2, 707-763 (2021). https://doi.org/10.3390/suschem2040039
  40. J. K. Pedersen, T. A. Batchelor, A. Bagger, and J. Rossmeisl, High-entropy alloys as catalysts for the CO2 and CO reduction reactions, ACS Catal., 10, 2169-2176 (2020). https://doi.org/10.1021/acscatal.9b04343
  41. T. Chen, W. G. Wang, H. Miao, T. Li, and C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, J. Power Sources, 196, 2461-2468 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.095
  42. P. Zhang, Z. Yang, Y. Jin, C. Liu, Z. Lei, F. Chen, and S. Peng, Progress report on the catalyst layers for hydrocarbon-fueled SOFCs, Int. J. Hydrog. Energy, 46, 39369-39386 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.198
  43. K. X. Lee, B. Hu, P. K. Dubey, M. Anisur, S. Belko, A. N. Aphale, and P. Singh, High-entropy alloy anode for direct internal steam reforming of methane in SOFC, Int. J. Hydrog. Energy, 47, 38372-38385 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.018
  44. D. Chen, Y. Huan, G. Ma, M. Ma, X. Wang, X. Xie, J. Leng, X. Hu, and T. Wei, High-entropy alloys FeCoNiCuX (X = Al, Mo)-Ce0.8Sm0.2O2 as high-performance solid oxide fuel cell anodes, ACS Appl. Energy Mater., 6, 1076-1084 (2023). https://doi.org/10.1021/acsaem.2c03655
  45. H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, Prospect of hydrogen technology using proton-conducting ceramics, Solid State Ion., 168, 299-310 (2004). https://doi.org/10.1016/j.ssi.2003.03.001
  46. L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ, Science, 326, 126-129 (2009). https://doi.org/10.1126/science.1174811
  47. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 ℃ with chemically stable proton-conducting electrolytes, Adv. Mater., 24, 195-208 (2012). https://doi.org/10.1002/adma.201103102
  48. B. Beyribey, H. Kim, and J. Persky, Electrochemical characterization of BaCe0.7Zr0.1Y0.16Zn0.04O3-δ electrolyte synthesized by combustion spray pyrolysis, Ceram. Int., 47, 1976-1979 (2021). https://doi.org/10.1016/j.ceramint.2020.09.028
  49. L. Yang, Y. Choi, W. Qin, H. Chen, K. Blinn, M. Liu, P. Liu, J. Bai, T. A. Tyson, and M. Liu, Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells, Nat. Commun., 2, 357 (2011).
  50. W. G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane, J. Power Sources, 118, 150-156 (2003). https://doi.org/10.1016/S0378-7753(03)00072-7
  51. Y. Feng, J. Luo, and K. T. Chuang, Propane dehydrogenation in a proton-conducting fuel cell, J. Phys. Chem. C, 112, 9943-9949 (2008). https://doi.org/10.1021/jp710141c
  52. Y. Feng, J.-L. Luo, and K. T. Chuang, Carbon deposition during propane dehydrogenation in a fuel cell, J. Power Sources, 167, 486-490 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.052
  53. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. O'Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349, 1321-1326 (2015). https://doi.org/10.1126/science.aab3987
  54. C. Duan, R. J. Kee, H. Zhu, C. Karakaya, Y. Chen, S. Ricote, A. Jarry, E. J. Crumlin, D. Hook, and R. Braun, Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells, Nature, 557, 217-222 (2018). https://doi.org/10.1038/s41586-018-0082-6
  55. S. Liu, K. T. Chuang, and J.-L. Luo, Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell, ACS Catal., 6, 760-768 (2016). https://doi.org/10.1021/acscatal.5b02296
  56. B. Hua, N. Yan, M. Li, Y.-q. Zhang, Y.-f. Sun, J. Li, T. Etsell, P. Sarkar, K. Chuang, and J.-L. Luo, Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration, Energy Environ. Sci., 9, 207-215 (2016). https://doi.org/10.1039/C5EE03017J
  57. X.-Z. Fu, J.-L. Luo, A. R. Sanger, Z.-R. Xu, and K. T. Chuang, Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors, Electrochim. Acta, 55, 1145-1149 (2010). https://doi.org/10.1016/j.electacta.2009.10.010
  58. M. Li, B. Hua, J.-l. Luo, J. Pu, B. Chi, and L. Jian, Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium-and ytterbium-doped barium cerates for direct methane solid oxide fuel cells, J. Mater. Chem. A, 3, 21609-21617 (2015). https://doi.org/10.1039/C5TA06488K
  59. L. Wang, Y. Fan, J. Li, L. Shao, X. Xi, X.-Z. Fu, and J.-L. Luo, La0.5Sr0.5Fe0.9Mo0.1O3-δ-CeO2 anode catalyst for Co-Producing electricity and ethylene from ethane in proton-conducting solid oxide fuel cells, Ceram. Int., 47, 24106-24114 (2021). https://doi.org/10.1016/j.ceramint.2021.05.121
  60. P. Qiu, S. Sun, X. Yang, F. Chen, C. Xiong, L. Jia, and J. Li, A review on anode on-cell catalyst reforming layer for direct methane solid oxide fuel cells, Int. J. Hydrog. Energy, 46, 25208-25224 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.040
  61. A. D. Ballarini, S. R. de Miguel, E. L. Jablonski, O. A. Scelza, and A. A. Castro, Reforming of CH4 with CO2 on Pt-supported catalysts, Catal. Today, 107-108, 481-486 (2005). https://doi.org/10.1016/j.cattod.2005.07.058
  62. A. K. Avetisov, J. R. Rostrup-Nielsen, V. L. Kuchaev, J. H. Bak Hansen, A. G. Zyskin, and E. N. Shapatina, Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst, J. Mol. Catal. A: Chem., 315, 155-162 (2010). https://doi.org/10.1016/j.molcata.2009.06.013
  63. M. A. Nieva, M. M. Villaverde, A. Monzon, T. F. Garetto, and A. J. Marchi, Steam-methane reforming at low temperature on nickel-based catalysts, Chem. Eng. J., 235, 158-166 (2014). https://doi.org/10.1016/j.cej.2013.09.030
  64. N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, Catalyst design for dry reforming of methane: Analysis review, Renew. Sustain. Energy Rev., 82, 2570- 2585 (2018). https://doi.org/10.1016/j.rser.2017.09.076
  65. Z. Zhan, and S. A. Barnett, An octane-fueled solid oxide fuel cell, Science, 308, 844-847 (2005). https://doi.org/10.1126/science.1109213
  66. W. Wang, R. Ran, and Z. Shao, Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane, Int. J. Hydrog. Energy, 36, 755-764 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.048
  67. W. Wang, W. Zhou, R. Ran, R. Cai, and Z. Shao, Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer, Electrochem. Commun., 11, 194-197 (2009). https://doi.org/10.1016/j.elecom.2008.11.014
  68. Z. Lyu, Y. Wang, Y. Zhang, and M. Han, Solid oxide fuel cells fueled by simulated biogas: Comparison of anode modification by infiltration and reforming catalytic layer, Chem. Eng. J., 393, 124755 (2020).
  69. S. D. Angeli, G. Monteleone, A. Giaconia, and A. A. Lemonidou, State-of-the-art catalysts for CH4 steam reforming at low temperature, Int. J. Hydrog. Energy, 39, 1979-1997 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.001
  70. C. Jin, C. Yang, F. Zhao, A. Coffin, and F. Chen, Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer, Electrochem. Commun., 12, 1450-1452 (2010). https://doi.org/10.1016/j.elecom.2010.08.006
  71. X.-F. Ye, S. Wang, Z. Wang, L. Xiong, X. Sun, and T. Wen, Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel, J. Power Sources, 177, 419-425 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.054
  72. P. Frontera, A. Macario, A. Aloise, P. Antonucci, G. Giordano, and J. Nagy, Effect of support surface on methane dry-reforming catalyst preparation, Catal. Today, 218, 18-29 (2013). https://doi.org/10.1016/j.cattod.2013.04.029
  73. T. Wei, L. Jia, H. Zheng, B. Chi, J. Pu, and J. Li, LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4, Appl. Catal. A: Gen., 564, 199-207 (2018). https://doi.org/10.1016/j.apcata.2018.07.031
  74. Z. Tao, M. Fu, and Y. Liu, A mini-review of carbon-resistant anode materials for solid oxide fuel cells, Sustain. Energy Fuels, 5, 5420-5430 (2021). https://doi.org/10.1039/D1SE01300A
  75. P. Li, B. Yu, J. Li, X. Yao, Y. Zhao, and Y. Li, Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum, J. Power Sources, 320, 251-256 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.100
  76. B. Hua, M. Li, J.-l. Luo, J. Pu, B. Chi, and J. Li, Carbon-resistant Ni-Zr0.92Y0.08O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methanesteam as fuel, J. Power Sources, 303, 340-346 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.029
  77. Z. Wang, Z. Wang, W. Yang, R. Peng, and Y. Lu, Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer, J. Power Sources, 255, 404-409 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.014
  78. Y.-F. Sun, J.-H. Li, S.-H. Cui, K.T. Chuang, and J.-L. Luo, Carbon deposition and sulfur tolerant La0.4Sr0.5Ba0.1TiO3-La0.4Ce0.6O1.8 anode catalysts for solid oxide fuel cells, Electrochim. Acta, 151, 81-88 (2015). https://doi.org/10.1016/j.electacta.2014.11.076