• 제목/요약/키워드: Fuel Vessel

검색결과 316건 처리시간 0.022초

탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가 (Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber)

  • 김건회
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

어선 면세유류 공급기준량 산정에 관한 연구 (A Study on the Supply Criteria for the Tax-exempted Vessel Fuel)

  • 강연실;김대현
    • 수산경영론집
    • /
    • 제36권3호
    • /
    • pp.89-117
    • /
    • 2005
  • Currently, the tax - exempted vessel fuel is provided for commercial fishing in order to increase the competitive power of fishery production thorough the National Federation of Fisheries Cooperatives. The National Federation of Fisheries Cooperatives should predict the exact amount of fuel consumption for fishing every year to request the fuel from the government. Unfortunately, there is no sophisticated model to predict the tax - exempted vessel fuel consumption. In 2003, the consumption of the tax- exempted vessel fuel was only $25.1\%$ of the estimation amount by the National Federation of Fisheries Cooperatives. This causes an inefficiency in the petroleum management. Moreover, we need some data such as the annual average fishing hours, fishing days and fishing behavior to adopt a new policy regarding fishing. Up to now, the data have been obtained by survey with response in the fishery field. In the most case, we have a small number of data because we spend so much time and money consuming for collecting fishing data. As a result, the level of confidence of the data is associated with the sample size and normally low. In order to achieve more accurate data, we need to develope an efficient method for collecting fishing data. In this research, we proposed a new method to predict the tax- exempted vessel fuel consumption more exactly. The prediction results from the proposed method has been compared with the results from the current method. According to the results in this research, the method proposed here produced much better accuracy than the current method. In addition, we also proposed in the paper for collecting fishing data of the annual average fishing hours using the tax - exempted vessel fuel consumption and the gasoline consumption of vessel engine. The fishing data obtained by using the method proposed in this research could be much more efficient and accurate because it doesn't need to estimate from survey sample data.

  • PDF

소형 수소추진선박 기술 개발 및 실증 (The Technology Development and Substantiation of Small Hydrogen Powered Vessel)

  • 임재완;이세준;윤상진;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.555-561
    • /
    • 2023
  • In this study, we proposed a standard model for the design, construction and demonstration of the technology development and substantiation of small hydrogen powered vessel in order to respond to the alternative fuel-using vessel market that requires the use of low-carbon/carbon-free fuel as a greenhouse gas reduction measure. The hydrogen fuel cell-based electric propulsion system developed through this is optimized through performance and durability tests on the land-based test site (LBTS), and the electric propulsion system applied to this result is mounted on a small hydrogen propulsion vessel and operated. Simultaneously, through the digital twin technology between the LBTS and the hydrogen-propelled vessel on the sea, the technology that can predict and diagnose the problems that can occur in the electric propulsion system of the vessel is applied to carry out the empirical study of the hydrogen-propelled vessel. In addition, we propose a commercialization model by analyzing the economic feasibility of the demonstration vessel.

원자로 내 핵연료조사시험용 압력용기조립체 설계 (Design of Vessel Assembly for Fuel Irradiation Test in Reactor)

  • 박국남;이종민;지대영;박수기;이정영;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

선박 냉각시스템에서의 전기 에너지 절감 시스템에 관한 연구 (Study on the Electric Energy Saving System in Marine Cooling System)

  • 김연형;배수영;정성영;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1157-1163
    • /
    • 2008
  • Fuel represents a significant portion of the operating costs of voyages of the vessel. Under this situation, dramatic increase in fuel price caused a problem that earnings of ship becomes decreased seriously. Pumps in a cooling system of the vessel are often operated inefficiently. The reasons will vary from process to process and application to application. Inefficiency of pumps is one of the reason for making the cost of operating the vessel increased. This paper suggests energy-effective cooling system that controls sea water pumps with inverters to reduce energy consumption in vessel by conducting simulation with LabVIEW. Results shows that electric energy consumption of pumps are significantly deceased. If this energy-effective cooling system is applied to other systems which need cooling, it could be useful in reducing electric energy wastage.

탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계 (Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber)

  • 김건회
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

지진레벨의 증가가 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연 료 집합체에 미치는 영향 (The Effect of Seismic Level Increase on the Reactor Vessel Internals and Fuel Assemblies for the Korean Standard Suclear Power Plant)

  • ;정명조;박윤원;이정배
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.33-41
    • /
    • 1997
  • 경수로형 원자력발전소 표준화 작업의 일환으로 만들어진 한국표준형 원자력 발전소는 그 건설부지를 한반도뿐만 아니라 인접 아시아국가의 여러곳을 목표로 하고 있으며 이와 관련하여 안전정지지진의 레벨을 0.3g로 증가시키려는 시도가 계획되고 있다. 본 연구에서는 이와 같은 지진레벨 증가가 기존의 0.2g로 설계된 원자로 내부 구조물과 핵연료집합체에 미치는 영향을 평가하였다. 운전기준지진 및 안전정지지진의 응답을 비교함으로써 비선형 응답특성을 조사하였고 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연료집합체의 설계 타당성에 대하여 언급하였다.

  • PDF

대용량 (360W급) LED 집어등의 오징어 어획성능 (Fishing efficiency of high capacity (360W) LED fishing lamp for squid Todarodes pacificus)

  • 안영일
    • 수산해양기술연구
    • /
    • 제50권3호
    • /
    • pp.326-333
    • /
    • 2014
  • This study was conducted to investigate the fishing efficiency of an improved LED fishing lamp for squids. A total of 31 fishing operations were carried out with six-crew commercial fishing vessel Haengbok-Ho (24 tons) on which 43.2kW LED was installed, along with 14 automatic jigging machines, from October 6 to November 16, 2012. The 19 fishing vessels with Haengbok-Ho were compared with a control subject was 24 tons or 29 tons. A total illuminating power of metal halide (MH) fishing lamps in the control fishing vessel was either 84kW or 120kW. The number of automatic jigging machines in the control vessels was 8-18 and the number of crews engaged for fishing operation was 3-13. Average fuel consumption of LED fishing vessels during fishing operation was 505.1l which led to an average fuel consumption of 42.7l per hour. LED fishing vessel and MH fishing vessel caught on an average 1,946 squids and 2,439 squids, respectively, during the study period. Crews (hand line and hand reel) caught about 2.2 times the automatic jigging machines for LED fishing vessel and about 2.1 times for MH fishing vessel. Meanwhile, catches by the fishing vessels with LED in the combined total number per one line of automatic jigging machine and per crew were 86.6% of that of the control fishing vessel with MH. Also, fishing vessels with LED per automatic jigging machine achieved 71.8% of catches of that with MH fishing lamp. The catches of squids per the fishing vessel with 1W LED fishing lamp were higher by more than 135.5% of that in the fishing vessel with MH, which showed a good fishing performance even with only the use of a LED fishing lamp.

수중함용 2차전지-연료전지 추진체계의 성능 예측을 위한 M&S 연구 (Modeling and Simulation of Secondary Battery-Fuel Cell Propulsion System for Underwater Vessel to Estimate the Operation Time)

  • 지현진;조성백;배중면
    • 한국군사과학기술학회지
    • /
    • 제17권5호
    • /
    • pp.694-702
    • /
    • 2014
  • One of the most important devices in an underwater vessel is a propulsion system. It should be a quiet and efficient system for stealthy operations in the large mission area. Hence lead-acid battery system has been used to supply the energy to electric motor. Recent technological developments and improvements, such as polymer electrolyte membrane(PEM) fuel cell and lithium polymer battery and have created the potential to improve overall power and propulsion performance. An underwater vessel always starts their mission with a limited energy and is not easy to refuel. Therefore design of energy elements, such as fuel cell and battery, and their load distribution are important to increase the maximum operating time of underwater vessel. In this paper, the lead-acid battery/PEM fuel cell and lithium polymer battery/PEM fuel cell were suggested as propulsion system and their performances were analyzed by modeling and simulation using Matlab/Simulink. Each model concentrated on representing the characteristics of energy element depending on demand current. As a result the effect of load distribution between battery and fuel cell was evaluated and the operation time of each propulsion system was able to be estimated exactly.