• Title/Summary/Keyword: Fuel Particles

Search Result 515, Processing Time 0.03 seconds

Powder Synthesis and Membrane Deposition of BaCe0.9Y0.1O2.95 and SrCe0.9Y0.1O2.95 System for Hydrogen Separation Application (수소분리용 BaCe0.9Y0.1O2.95 및 SrCe0.9Y0.1O2.95 분말 합성 및 분리막 증착)

  • Kang, Kyung-Min;Yun, Young-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.759-764
    • /
    • 2011
  • Mixed-conducting oxide powders, $BaCe_{0.9}Y_{0.1}O_{2.95}$ (BCY) and $SrCe_{0.9}Y_{0.1}O_{2.95}$ (SCY) powders have been prepared by a solid-state reaction method. Xray diffraction patterns of the prepared powders showed the sharp peaks of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases. The oxide powders that were prepared by attrition milling showed rather large particles and severe necking between particles in FE-SEM images as well as residual reactant ($BaCO_3$) and secondary phases ($SrCeO_3$ and $CeO_2$) in XRD patterns. The oxide powders prepared using ball milling showed particles under approximately 500 nm and typical XRD patterns of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases. Ceramic membranes of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases were fabricated by the aerosol deposition method using the oxide powders synthesized.

IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

  • Kim, Bong Goo;Park, Sung Jae;Hong, Sung Taek;Lee, Byung Chul;Jeong, Kyung-Chai;Kim, Yeon-Ku;Kim, Woong Ki;Lee, Young Woo;Cho, Moon Sung;Kim, Yong Wan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.941-950
    • /
    • 2013
  • The Korean Nuclear-Hydrogen Technology Development (NHTD) Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about $1030^{\circ}C$ in BOC (Beginning of Cycle) during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about $1.7{\times}10^{21}\;n/cm^2$, PIE (Post-Irradiation Examination) of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility). This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.

Investigation of Plume Opacity Induced by the Combustion of Orimulsion (오리멀젼 연소로 인한 가시백연의 원인 규명)

  • Kim, Young-Hun;Kim, Jong-Ho;Joo, Ji-Bong;Lee, Jeong-Jin;Kim, Jin-Soo;Kwak, Byung-Kyu;Jeong, Jin-Heun;Park, Soong-Keun;Yi, Jong-Heop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.297-303
    • /
    • 2007
  • Orimulsion, a bitumen-in-water emulsified fuel, has been used throughout the world as a substitute fuel for heavy oil and coal. Orimulsion has relatively high levels of sulfur, nickel, and vanadium, compared to other fuel oils and coals, and has been the subject of much debate regarding the environmental impacts. In Korea, Y power plant has operated boilers with Orimulsion as a fuel, and they has some drawbacks during the plant operation, such as plume opacity. In this study, we investigated the cause of formation mechanism and factors for the plume opacity by investigating the operation data, and measuring the particle size distribution at EP(Electrostatic Precipitator), FGD(Fuel Gas Desulfurization) and TMS(Telecommunications Management System) units. Resulting data showed the primary particles below 1 ${\mu}m$ formed were regrown by the recombination of $SO_3$ in wet-limestone FGD process, and thus the secondary particles are induced to cause the plume opacity.

Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells (탄소 담지체의 결정성에 따른 고분자전해질형 연료전지의 내구성 평가 연구)

  • Oh, Hyung-Suk;Sharma, Raj Kishore;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • The influence of graphitization of carbon support on the electrochemical corrosion of carbon and sintering of Pt particles are investigated by measuring $CO_2$ emission at a constant potential of 1.4 V for 30 min using on-line mass spectrometry and cyclic voltammogram. In comparison to commercial Pt/C (from Johnson Matthey), highly graphitized carbon nanofiber (CNF) supported Pt catalyst exhibits lower performance degradation and $CO_2$ emission. As the more carbon corrosion occurred, the more prominent changes were detected in electrochemical characteristics of fuel cell. This indicates that the carbon corrosion affects significantly the fuel cell durability. From the observed results, CNF is considered to be more corrosion resistant material as a catalyst support. However, CNF shows higher aggregation of Pt particles under repeated cyclic voltammetry between 0 and 0.8 V where the carbon corrosion is not initiated.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

Platinum Nanoparticles Synthesis using Recovered Platinum from Waste Fuel cell (폐연료전지(廢燃料電池)스택으로부터 회수(回收)된 백금(白金)의 나노 입자(粒子) 제조(製造))

  • Kim, Young-Ae;Kwon, Hyun-Ji;Koo, Jeong-Boon;Kwak, In-Seob;Sin, Jang-Sik
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, for recovery of renewable noble metal from used stack of fuel cell, synthesis of platinum nano particle is established through effect of platinum solution concentration, pH value, reducing agent and dispersing agent at a volume ratio of 1 mM $H_2PtCl_6$:10 mM $NaBH_4$:8 mM Cl4TABr = 1:0.4:0.4(vol.%), pH4, $50^{\circ}C$, 160 rpm and 10min. Less than 5 nm platinum particles were synthesized using Pt leaching solution from used MEA of stack under same condition of method using simulated Pt solution. The characteristics of synthesized nano particles was illustrated by XPS analysis as the reduction of platinum ions into platinum metals(zero-valent).

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.