• 제목/요약/키워드: Fuel Cell Model

검색결과 441건 처리시간 0.021초

비선형 동특성 모델을 통한 전해막 습증기 함유도 특성 예측 (Prediction of Membrane Water Content Characteristics through Dynamic Nonlinear Model)

  • 이찬희;김영현;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.497-505
    • /
    • 2021
  • Water management is essential to improve the performance of proton exchange membrane fuel cells. This study targets to understand the characteristics of water concentration in proton exchange membrane fuel cells at a dynamic load variable environment. The fuel cell model was developed to simulate nonlinear water transport in membrane by the MATLAB/Simulink® (MathWorks, Natick, MA, USA) platform, and it calculates water content in membrane, ionic conductivity, and predicts fuel cell performance through one-dimensional analysis.

자동차용 연료전지 냉각계통 열관리 동적 모사 (Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application)

  • 한재영;이강훈;유상석
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1185-1192
    • /
    • 2012
  • 차량용 연료전지는 내연기관보다 운전 온도가 낮아 냉각수의 온도를 낮게 관리해야 하며, 이러한 냉각수 온도는 대기와의 온도차가 내연기관보다 작아 고성능 방열판 및 열관리계가 요구된다. 이러한 차량용 연료전지 열 관리계는 특히 연료전지 운전 온도 및 스택 내 온도분포를 결정하는 중요한 구성품이다. 본 연구에서는 차량용 연료전지 열 관리계 모델을 Matlab/$Simulink^{(R)}$ 환경 하에 개발하였으며, 기본 설계에 적용이 가능하도록 방열판 상세 모델을 개발하고 열 관리계는 팬, 모터, 방열판 그리고 냉각수 펌프로 구성하였다. 팬과 펌프는 경험식을 이용해 모델을 개발하였으며 모터 동특성을 고려하였다. 두 구성품은 연료전지의 입구와 출구 온도를 추출해 정해진 지령을 수령하도록 제어 하였다. 본 연구에는 연료전지 차량에 적합한 방열기 설계를 위해 방열기 특성을 확인하고, 이를 연료전지 시스템과 통합운전하면서, 연료전지 운전제어에 적절한 지 확인하였다.

3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화 (Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations)

  • 정지훈;한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

Aspen Custom Modeler를 이용한 고분자전해질 연료전지 다중 물리 모델 개발 (Development of a Multi-Physics Model of Polymer Electrolyte Membrane Fuel Cell Using Aspen Custom Modeler)

  • 손혜영;한재수;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.489-496
    • /
    • 2021
  • The performandce of polymer electrolyte membrane fuel cell depends on the effective management of heat and product water by the electrochemical reaction. This study is designed to investigate the parametric change of heat management along the channel of polymer electrolyte membrane. The model was developed by an aspen custom modeler that it can solve differential equation with distretization model. The model can simulate water transport through the membrane electrolyte that is coupled with heat generation. In order to verify the model, it is compared with the experimental data. The water transport behavior is then evaluated with the simulation model.

고분자 전해질 연료전지 하이브리드 무인 비행기의 설계, 제어, 평가 기법 리뷰 (Design, Control and Evaluation Methods of PEM Fuel Cell Unmanned Aerial Vehicle: A review)

  • 차문용;김민진;손영준;양태현
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.405-418
    • /
    • 2014
  • Fuel cells are suitable for a power plant of a unmanned aerial vehicle (UAV) as it is not only environmentally friendly and quiet but also more efficient than an internal combustion engine. A fuel cell hybrid UAV has better performance in endurance than a fuel cell only or battery only UAV. One of the key purposes of making fuel cell hybrid UAVs is having long endurance and now maximum 26 hours of flight is possible. Because optimal design and control methods for fuel cell hybrid UAVs are absolutely needed for their long endurance we have to check the methods. The aircraft made by using application-integrated design method has less BOP mass and better performances. The optimal design and control methods are generally based on computer simulations or Hardware-In-The-Loop simulations by using dynamic models for their design and control. The Hardware-In-The-Loop simulation (HILS) is to use a hardware device like a fuel cell stack as well as a simulation program and it allows for making optimally designed applications. This paper introduce efficient methods of design, control and evaluation for the fuel cell hybrid UAVs.

연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구 (Optimization of the Multi-chamber Perforated Muffler for the Air Processing Unit of the Fuel Cell Electric Vehicle)

  • 김의열;이상권
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.736-745
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

수학적 모터 모델 기반 연료전지 자동차 가상 플랫폼 개발 (Development of FCHEV Virtual Platform using Motor Model Based on Mathematical Formulation)

  • 김성수;박상철;최장영
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.31-39
    • /
    • 2013
  • A virtual chassis platform for Fuel Cell Hybrid Electric Vehicles(FCHEV) has been developed, and a virtual platform similar to the actual system has been composed. In addition, major components such as a motor, fuel cell and battery for the virtual platform have been constructed by using a mathematical formulation. The FCHEV virtual platform using a detailed model based on the mathematical formula is capable of simulating various conditions according to changes of the control logic and component modules to evaluate performance, considering the vehicle dynamic characteristics. Usability of the mathematical model has been verified by comparative simulations according to the motor current control variation. In addition, reliability of the developed virtual chassis platform has been verified by simulating its fuel consumption with the UDDS(Urban Dynamometer Driving Schedule) FTP-72 velocity profile.

부하의 변화를 고려한 연료전지 스택 동특성 모델링 (Fuel Cell Stack Dynamics Modeling Considering Load Variation)

  • 고정민;김종수;최규영;강현수;이병국
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.93-99
    • /
    • 2009
  • In this paper, transient voltage response of Polmer Electrolyte Membrane Fuel Cell (PEMFC) stack is analyzed and voltage dynamic characteristic is modeled for optimal design of power conditioning system (PCS). According that the load is changed, the corresponding operating voltage of fuel cell stack is also varied with a certain deep and rising time due to the chemical and mechanical responses. This transient behavior can affect on the operation with respect of PI gain in controller, duty ratio, capacitor of capacitor and so on. So in this paper the detailed theoretical analysis of transient voltage dynamics is explained and the methodology of dynamic modeling is introduced. In addition, the validity and feasibility of the proposed dynamic model is verified by experimental results under various load conditions.

개발 비용 감소를 위한 연료전지용 이젝터의 설계 및 성능평가 (Design and Performance Test for a Fuel Cell Ejector to Reduce its Development Cost)

  • 김민진;김동하;유상필;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.279-285
    • /
    • 2006
  • Recirculation for the unreacted fuel is necessary to improve the overall efficiency of the fuel cell system and to prevent fuel starvation since the fuel cell for a vehicle application is a closed system. In case of the automotive fuel cell, the ejector which does not require any parasitic power is good for the performance improvement and easy operation. It is essential to design the customized ejector due to the lack of the commercial ejector corresponding to the operating conditions of the fuel cell systems. In this study, the design methodology for the ejector customized to an automotive fuel cell is proposed. The model based sensitivity analysis prevents the time-consuming redesign and reduces the cost of developing ejector. As a result, the customized ejector to meet the desired performance within overall operating range has developed for the PEMFC automotive system.

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.