DOI QR코드

DOI QR Code

Prediction of Membrane Water Content Characteristics through Dynamic Nonlinear Model

비선형 동특성 모델을 통한 전해막 습증기 함유도 특성 예측

  • LEE, CHANHEE (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • KIM, YOUNGHYEON (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • YU, SANGSEOK (Department of Mechanical Engineering, Chungnam National University)
  • 이찬희 (충남대학교 대학원 기계공학과) ;
  • 김영현 (충남대학교 대학원 기계공학과) ;
  • 유상석 (충남대학교 기계공학부)
  • Received : 2021.10.13
  • Accepted : 2021.12.14
  • Published : 2021.12.30

Abstract

Water management is essential to improve the performance of proton exchange membrane fuel cells. This study targets to understand the characteristics of water concentration in proton exchange membrane fuel cells at a dynamic load variable environment. The fuel cell model was developed to simulate nonlinear water transport in membrane by the MATLAB/Simulink® (MathWorks, Natick, MA, USA) platform, and it calculates water content in membrane, ionic conductivity, and predicts fuel cell performance through one-dimensional analysis.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원(No. 20203010030010)과 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(20011907)에 의한 연구입니다.

References

  1. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, and J. Shen, "A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation", J. Power Sources, Vol. 165, No. 2, 2007, pp. 739-756, doi: https://doi.org/10.1016/j.jpowsour.2006.12.012.
  2. S. Kelouwani, K. Agbossou, and R. Chahine, "Model for energy conversion in renewable energy system with hydrogen storage", J. Power Sources, Vol. 140, No. 2, 2005, pp. 392-399, doi: https://doi.org/10.1016/j.jpowsour.2004.08.019.
  3. L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: principles, types, fuels, and applications", ChemPhysChem, Vol. 1, No. 4, 2000, pp. 162-193, doi: https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z.
  4. N. Z. Muradov and T. N. Veziroglu, ""Green" path from fossil-based to hydrogen economy: an overview of carbon- neutral technologies", Int. J. Hydrog. Energy, Vol. 33, No. 23, 2008, pp. 6804-6839, doi: https://doi.org/10.1016/j.ijhydene.2008.08.054.
  5. M. Steinberg, "Fossil fuel decarbonization technology for mitigating global warming", Int. J. Hydrog. Energy, Vol. 24, No. 8, 1999, pp. 771-777, doi: https://doi.org/10.1016/S0360-3199(98)00128-1.
  6. J. Son, J. Jeong, and S. Yu, "Measurement of diffusion coefficient and water transport flux in Nafion ® 117 membrane", The Korean Society of Mechanical Engineers, Vol. 43, No. 9, 2019, pp. 631-637, doi: https://doi.org/10.3795/KSME-B.2019.43.9.631.
  7. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuel cell model", J. Electrochem. Soc., Vol. 138, No. 8, 1991, pp. 2334-2342, doi: https://doi.org/10.1149/1.2085971.
  8. T. Okada, G. Xie, and M. Meeg, "Simulation for water management in membranes for polymer electrolyte fuel cells", Electrochimica Acta, Vol. 43, 1998, No. 14-15, pp. 2141-2155, doi: https://doi.org/10.1016/S0013-4686(97)10099-8.
  9. J. S. Yi and T. V. Nguyen, "An Along-the- channel model for proton exchange membrane fuel cells", Journal of the Electrochemical Society, Vol. 145, No. 4, 1998, pp. 1149-1159, doi: https://doi.org/10.1149/1.1838431.
  10. S. L. Chavan and D. B. Talange, "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, Vol. 138, 2017, pp. 437-445, doi: https://doi.org/10.1016/j.energy.2017.07.070.
  11. J. S. Yang, G. M. Choi, and D. J. Kim, "Prediction of fuel cell performance and water content in the membrane of a proton exchange membrane fuel cell", The Korean Society of Automotive Engineers, Vol. 14, No. 6, 2006, pp. 151-159. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00770118.
  12. P. C. Sui, L. D. Chen, J. P. Seaba, and Y. Wariishi, "Modeling and optimization of a PEMFC catalyst layer", SAE Technical Paper Series, 1999, doi: https://doi.org/10.4271/1999-01-0539.
  13. J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors", University of Michigan, 2003. Retrieved from http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf.
  14. S. Yu and D. Jung, "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area", Renewable Energy, Vol. 33, No. 12, 2008, pp. 2540-2548, doi: https://doi.org/10.1016/j.renene.2008.02.015.
  15. S. Dutta, S. Shimpalee, and J. W. Van Zee, "Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell", International Journal of Heat and Mass Transfer, Vol. 44, No. 11, 2001, pp. 2029-2042. doi: https://doi.org/10.1016/s0017-9310(00)00257-x.
  16. L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Advanced Energy Systems, 2002, pp. 139-145, doi: https://doi.org/10.1115/imece2002-33167.