Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.497

Prediction of Membrane Water Content Characteristics through Dynamic Nonlinear Model  

LEE, CHANHEE (Department of Mechanical Engineering, Chungnam National University Graduate School)
KIM, YOUNGHYEON (Department of Mechanical Engineering, Chungnam National University Graduate School)
YU, SANGSEOK (Department of Mechanical Engineering, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 497-505 More about this Journal
Abstract
Water management is essential to improve the performance of proton exchange membrane fuel cells. This study targets to understand the characteristics of water concentration in proton exchange membrane fuel cells at a dynamic load variable environment. The fuel cell model was developed to simulate nonlinear water transport in membrane by the MATLAB/Simulink® (MathWorks, Natick, MA, USA) platform, and it calculates water content in membrane, ionic conductivity, and predicts fuel cell performance through one-dimensional analysis.
Keywords
Proton exchange membrane fuel cell; Water transport; Water content; Dynamic model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: principles, types, fuels, and applications", ChemPhysChem, Vol. 1, No. 4, 2000, pp. 162-193, doi: https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z.   DOI
2 S. Yu and D. Jung, "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area", Renewable Energy, Vol. 33, No. 12, 2008, pp. 2540-2548, doi: https://doi.org/10.1016/j.renene.2008.02.015.   DOI
3 J. S. Yi and T. V. Nguyen, "An Along-the- channel model for proton exchange membrane fuel cells", Journal of the Electrochemical Society, Vol. 145, No. 4, 1998, pp. 1149-1159, doi: https://doi.org/10.1149/1.1838431.   DOI
4 S. L. Chavan and D. B. Talange, "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, Vol. 138, 2017, pp. 437-445, doi: https://doi.org/10.1016/j.energy.2017.07.070.   DOI
5 T. Okada, G. Xie, and M. Meeg, "Simulation for water management in membranes for polymer electrolyte fuel cells", Electrochimica Acta, Vol. 43, 1998, No. 14-15, pp. 2141-2155, doi: https://doi.org/10.1016/S0013-4686(97)10099-8.   DOI
6 P. C. Sui, L. D. Chen, J. P. Seaba, and Y. Wariishi, "Modeling and optimization of a PEMFC catalyst layer", SAE Technical Paper Series, 1999, doi: https://doi.org/10.4271/1999-01-0539.   DOI
7 S. Kelouwani, K. Agbossou, and R. Chahine, "Model for energy conversion in renewable energy system with hydrogen storage", J. Power Sources, Vol. 140, No. 2, 2005, pp. 392-399, doi: https://doi.org/10.1016/j.jpowsour.2004.08.019.   DOI
8 M. Steinberg, "Fossil fuel decarbonization technology for mitigating global warming", Int. J. Hydrog. Energy, Vol. 24, No. 8, 1999, pp. 771-777, doi: https://doi.org/10.1016/S0360-3199(98)00128-1.   DOI
9 X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, and J. Shen, "A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation", J. Power Sources, Vol. 165, No. 2, 2007, pp. 739-756, doi: https://doi.org/10.1016/j.jpowsour.2006.12.012.   DOI
10 J. S. Yang, G. M. Choi, and D. J. Kim, "Prediction of fuel cell performance and water content in the membrane of a proton exchange membrane fuel cell", The Korean Society of Automotive Engineers, Vol. 14, No. 6, 2006, pp. 151-159. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00770118.
11 J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors", University of Michigan, 2003. Retrieved from http://www-personal.umich.edu/~annastef/FuelCellPdf/pukrushpan_thesis.pdf.
12 S. Dutta, S. Shimpalee, and J. W. Van Zee, "Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell", International Journal of Heat and Mass Transfer, Vol. 44, No. 11, 2001, pp. 2029-2042. doi: https://doi.org/10.1016/s0017-9310(00)00257-x.   DOI
13 L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Advanced Energy Systems, 2002, pp. 139-145, doi: https://doi.org/10.1115/imece2002-33167.   DOI
14 T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuel cell model", J. Electrochem. Soc., Vol. 138, No. 8, 1991, pp. 2334-2342, doi: https://doi.org/10.1149/1.2085971.   DOI
15 N. Z. Muradov and T. N. Veziroglu, ""Green" path from fossil-based to hydrogen economy: an overview of carbon- neutral technologies", Int. J. Hydrog. Energy, Vol. 33, No. 23, 2008, pp. 6804-6839, doi: https://doi.org/10.1016/j.ijhydene.2008.08.054.   DOI
16 J. Son, J. Jeong, and S. Yu, "Measurement of diffusion coefficient and water transport flux in Nafion ® 117 membrane", The Korean Society of Mechanical Engineers, Vol. 43, No. 9, 2019, pp. 631-637, doi: https://doi.org/10.3795/KSME-B.2019.43.9.631.   DOI