• Title/Summary/Keyword: Fuel Cell Converter

Search Result 261, Processing Time 0.021 seconds

Stand alone type Fuel Cell generation system controlled by micro-processor (마이크로프로세서에 의해 제어되는 독립형 연료전지용 전력변환 회로 설계)

  • 이원철;이태원;장수진;김진태;문승필;원충연
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.63-68
    • /
    • 2003
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to general load, it needs both a step up converter and an inverter. The step up converter makes DC to DC and the inverter changes DC to AC. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experimental results are displayed under several load conditions.

  • PDF

Fuel Cell Generation Systems with Active Clamp Current fed Half Bridge Converter (능동 클램프 전류형 하프 브리지 컨버터를 적용한 연료전지 발전시스템)

  • Jang S. J.;Kim J. T.;Lee T. W.;Lee B. K.;Won C. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.78-86
    • /
    • 2005
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and dc-ac inverter to be used in fuel cell generation system. Therefore, this paper presents dc-dc active clamp current-fed half-bridge converter with ZVS for fuel cell generation system. The proposed converter has outstanding advantages over the conventional dc-dc converters with respect to high efficiency and high component utilization. The Fuel Cell generation system consist of active clamp current-fed half-bridge converter to boost the Fuel Cell(PEMFC) voltage(28∼43[Vdc]) to 380[Vdc]. A single phase full-bridge inverter is implemented to produce 220[Vac], 60[Hz] AC outputs.

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

Design of the Two-Stage DC-DC Converter for 1kW Fuel Cell Power Generation System (1kW급 연료전지 발전용 2단 구성 방식의 DC-DC 컨버터 설계)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.206-208
    • /
    • 2008
  • In this paper, the two-stage DC-DC converter is proposed to make the control simple and to boost the low input voltage in the fuel cell generating system. The low efficiency of the conventional power converter is caused by a characteristic of the low-voltage and high-current in the fuel cell generating system. High-frequency transformer is needed to block the noise and to guarantee the safety of cell and load as a magnetically insulation. The proposed two-stage DC-DC converter for a fuel cell generation is more efficient than the traditional one-stage converter and easy to control. The design of a high-frequency transformer is also simple. Finally, the utility of the proposed converter is proved by the simulations and experiments.

  • PDF

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

The control of Interleaved Multi-phase Boost Converter for Application of a Fuelcell Railway Vehicle (연료전지 철도차량 적용을 위한 인터리브드 다상 승압형 컨버터 제어)

  • Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1925-1930
    • /
    • 2016
  • Fuel cell power generation system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. This paper presents the control of interleaved multi-phase boost converter as the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. PSIM simulation program is to be used to implement the modeling of the electrical fuelcell as well as traction motor control with interleaved multi-phase boost converter. Comparing the input current ripple rate, two-phase interleaved boost converter is less than the boost converter. But the more multi-phase not less proportional to the ripple factor. we confirmed that the amplitude of the input current ripple rate of converter depend on duty ratio.

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

Design of a Fuel Cell Power Conditioning System for Online Diagnosis and Load Leveling

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Choi, Woojin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.695-703
    • /
    • 2016
  • A fuel cell power conditioning system for online diagnosis and load leveling under the condition of varying load is developed in this study. The proposed system comprises a unidirectional boost converter and a bidirectional buck-boost converter with a battery. The system operates in two different modes. In normal mode, the bidirectional converter is utilized for load leveling; in diagnostic mode, it is utilized to control load voltage while the boost converter generates perturbation current to implement the online diagnosis function through in-situ electrochemical impedance spectroscopy (EIS). The proposed method can perform EIS for a fuel cell under varying-load conditions with no influence on the load. The validity and feasibility of the proposed system are verified by experiments, and the design procedure of the proposed system is detailed.

Reverse Current Control Method of Synchronous Boost Converter for Fuel Cell (연료전지용 동기식 부스트 컨버터의 역전류 제어방식)

  • Kim, Mi-Ji;Shin, Min-Ho;Choi, Seong-Chon;Kim, Ji-Hwan;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.411-412
    • /
    • 2013
  • This paper proposes the reverse current control method of synchronous boost converter for fuel cell. In order to implement a high efficiency charger with the synchronous boost converter, using MOSFETs instead of diodes is essential. Using the conventional boosting method, the reverse current is generated during transient state due to the nature of fuel-cell which needs soft starting depending on the amount of hydrogen. By using PWM control method, fuel-cell can be protected from being damaged by reverse current, so synchronous boosting method can be applied to charger applications. The experimental results are shown to verify that the implementation of high-efficiency converter is possible.

  • PDF

Compensation Scheme for Output Voltage Distortion in Fuel Cell Stack with Internal Humidifier (내부 가습형 연료전지 스택의 출력전압 왜곡 보상기법)

  • Koo, Keun-Wan;Woo, Dong-Gyun;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In this paper, the characteristics of portable fuel cell system are introduced and the dynamic response of output voltage of fuel cell stack with internal humidifier is analyzed. When the output of the fuel cell (FC) stack is short-circuited for humidification, the output voltage of the FC stack rapidly drops. In order to maintain the load voltage in the required range, dynamic compensation methods are proposed: 1) installing a capacitor behind the output of the FC stack; 2) utilizing the bi-directional converter. Especially, bi-directional converter is used when short of the FC output is detected or predicted by algorithm using data which is measured during previous three cycles. These methods are simulated by PSIM 9.0, then experimental results from the fuel cell system prototype verify the validity of the proposed methods.