• Title/Summary/Keyword: Fuel Additive

Search Result 144, Processing Time 0.021 seconds

High Performance Electrode of Polymer Electrolyte Membrane Fuel Cells Prepared by Direct Screen Printing Process (직접 스크린 프린팅법으로 제조된 고분자 전해질 연료전지의 고성능 전극)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • Screen printing it one of the most popular methods for the fabrication of catalytic layer in electrode of polymer electrolyte membrane fuel cells (PEMFCs) due to its convenience and adaptability. This paper suggests an improved screen-printing method, which is rather simple suppressing the swelling trouble without additive process and competitive with very low Pt loading in comparison with the previous methods. Particularly, the gasket unified MEA made better performances than the other especially at high current area due to blocking effect on the gas leakage during the operation. These methods give us more simplified and faster fabrication chances.

  • PDF

Stabilization Characteristics of Upgraded Coal using Palm Acid Oil

  • Rifella, Archi;Chun, Dong Hyuk;Kim, Sang Do;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • These days, coal is one of the most important energy resources used for transportation, industry, and electricity. There are two types of coal: high-rank and low-rank. Low-rank coal has a low calorific value and contains large amounts of useless moisture. The quality of low-rank coal can be increased by simple drying technology and it needs to be stabilized by hydrocarbons (e.g. palm acid oil, PAO) to prevent spontaneous combustion and moisture re-adsorption. Spontaneous combustion becomes a major problem during coal mining, storage, and transportation. It can involve the loss of life, property, and economic value; reduce the quality of the coal; and increase greenhouse gas emissions. Besides spontaneous combustion, moisture re-adsorption also leads to a decrease in quality of the coal due to its lower heating value. In this work, PAO was used for additive to stabilize the upgraded coal. The objectives of the experiments were to determine the stabilization characteristic of coal by analyzing the behavior of upgraded coal by drying and PAO addition regarding crossing-point temperature of coal, the moisture behavior of briquette coal, and thermal decomposition behavior of coal.

Effect of $TiO_2$ and $Al(OH)_3$ on Sintering Behavior of $UO_2 - Gd_2 O_3$ Fuel Pellets

  • Kang, Ki-Won;Kim, Keon-Sik;Song, Kun-Woo;Yang, Jae-Ho;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.559-565
    • /
    • 2000
  • The sintering behavior of UO$_2$-Gd$_2$O$_3$fuel pellets under H$_2$gas has been investigated using dilatometry and XRD methods. The addition of TiO$_2$or Al(OH)$_3$increased the density and grain size. A density of 95% TD and a grain size larger than 6 ${\mu}{\textrm}{m}$ are achieved by the addition of 0.1 wt% TiO$_2$or Al(OH)$_3$. It was found that the densification of UO$_2$-Gd$_2$O$_3$pellets was suppressed in the temperature range of 1300 to 150$0^{\circ}C$, compared to UO$_2$pellets. The formation of a (U,Gd)O$_2$solid solution is the main reason for the suppression of densification. The role of TiO$_2$in densification and grain growth is discussed on the basis of the densification cuwe and ceramography.

  • PDF

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (선박의 연료품질 기반 군용선박의 연료품질 적용가능성 분석)

  • Hwang, Gwang-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.281-286
    • /
    • 2021
  • The International Maritime Organization recently proposed a policy to establish a preemptive response strategy for exhaust gas pollution on board ships according to the recent strengthening of the sulfur content regulations. Discussions on improving the fuel oil quality and reducing emissions are also ongoing. Fuel oil quality information, which is one of the main concerns internationally, is increasing as the sulfur content standard is being applied from the current 3.5% to 0.5% by 2020. From the perspective of shipping companies and recipients, the essential quality of fuel oil is also requested for domestic and international fuel oil information, basic properties, correlation information between characteristics for application of solid ships and ships. The current standard for the basic quality of fuel oil is generally used, but the nature and composition of the fuel oil are very complex, and the interpretation of the basic quality is complicated because there are many cases outside the scope of the basic standard. Various factors were analyzed for the basic quality of fuel oil in terms of the basic quality of fuel oil, optimization of operation in ships, and fuel efficiency in ships. Moreover, the possibility of applying the standard according to the dilution was suggested.

Effect of Hydrocarbon Additives on SNCR DeNOx Characteristics under Oxidizing Diesel Exhaust Gas Conditions

  • Nam, Changmo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.809-820
    • /
    • 2018
  • DeNOx experiments for the effects of hydrocarbon additives on diesel SNCR process were conducted under oxidizing diesel exhaust conditions. A diesel-fueled combustion system was set up to simulate the actual cylinder and head, exhaust pipe and combustion products, where the reducing agent $NH_3$ and $C_2H_6/diesel$ fuel additives were separately or simultaneously injected into the exhaust pipe, used as the SNCR flow reactor. A wide range of air/fuel ratios (A/F=20~40) were maintained, based on engine speeds where an initial NOx level was 530 ppm and the molar ratios (${\beta}=NH_3/NOx$) ranged between 1.0~2.0, together with adjusting the amounts of hydrocarbon additives. Temperature windows were normally formed in the range of 1200~1350K, which were shifted downwards by 50~100K with injecting $C_2H_6/diesel$ fuel additives. About 50~68% NOx reduction was possible with the above molar ratios (${\beta}$) at the optimum flow #1 ($T_{in}=1260K$). Injecting a small amount of $C_2H_6$ or diesel fuel (${\gamma}=hydrocarbon/NOx$) gave the promising results, particularly in the lower exhaust temperatures, by contributing to the sufficient production of active radicals ($OH/O/HO_2/H$) for NOx reduction. Unfortunately, the addition of hydrocarbons increased the concentrations of byproducts such as CO, UHC, $N_2O$ and $NO_2$, and their emission levels are discussed. Among them, Injecting diesel fuel together with the primary reductant seems to be more encouraging for practical reason and could be suggested as an alternative SNCR DeNOx strategy under diesel exhaust systems, following further optimization of chemicals used for lower emission levels of byproducts.

Effect of Magnesium Oxide on Physical and Chemical Properties of FKM Elastomer (FKM Elastomer의 물리적 및 화학적 성질에 미치는 산화마그네슘의 영향)

  • Lee, Chang-Seop;Choi, Gi-Tae;Choi, Han-Hwal
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • Metal oxide(MgO) was added to FKM rubber in order to develop automotive fuel hose which ran show elastic characteristics under extreme condition. Cure characteristics, physical properties, thermal resistance and fuel resistance of FKM compounded rubber with MgO were investigated. MgO was mixed to FKM rubber materials within the range of $0{\sim}20phr$. From the test results of rheological properties and Mooney viscosity, the $t_{s2}$, $T_{c90}$ values increased as the MgO contents increased in FKM rubber compounding. Hardness and 100% modulus of FKM compounded rubber slightly increased, but tensile strength and elongations at break slightly decreased. From the test results of thermal resistance of rubber specimens at 130, 150, and $170^{\circ}C$ for 70 hrs, the changing rate of physical properties was found to be relatively small. Fuel resistance tests were carried out for fuel A, B, C and D at $40^{\circ}C$ for 70hrs, and the results showed that the changing rate in physical properties was found to increase from Fuel A to D, Furthermore thermal properties of FKM compounded rubber containing MgO were also investigated by using TGA/DSC. The optimum mixing ratio of additive to FKM rubber to get the maximum effect on thermal resistance and fuel resistance, within the range of desirable specification for rubber material, was determined to be 6 phr for MgO.

토착 미생물의 활성에 의한 유류오염 토양 정화 실험

  • 이지훈;이종규;최상진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.199-202
    • /
    • 2002
  • Many methods have been developed for the remediation of contaminated soil and groundwater. Among those technologies, in-situ bioremediation is most likely to be cost-effective method for petroleum hydrocarbon contamination. But the in-situ bioremediation can require more time to remediate hydrocarbon-contaminated soil and groundwater than other methods. Therefore we intended to save time of in-situ bioremediation using a biological additive to activate indigenous microbes in soil. The additive, 'Inipol EAP 22' stimulates the growth of specific flora, significantly accelerating the speed at which hydrocarbons are biodegraded. And it hans been tested in accordance with protocol approved by the USEPA and is registered on the National Contingency Plan Product Schedule List. In the experiment, three soil samples contaminated with fuel oil were prepared in the same concentration. Inipol EAP 22 was not added to one sample and was added to the other two samples with 5% and 10% of hydrocarbon by weight respectively. And $CO_2$gas derived from bacterial respiration was analyzed in each samples for 15 days. As a result, 145% and 153% of $CO_2$ evolution (microbial respiration) against the sample without 'Inipol EAP 22' occurred in samples with 'Inipol EAP 22' addition of 5% and 10%, respectively

  • PDF

A Study on the Desulfurization Efficiency of Limestone Sludge with Various Admixtures

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.479-482
    • /
    • 2015
  • The flue gas desulfurization (FGD) process is one of the most effective methods to reduce the amount of $SO_2$ gas (up to 90%) generated by the use of fossil fuel. Limestone is usually used as a desulfurizing agent in the wet-type FGD process; however, the limestone reserves of domestic mines have become exhausted. In this study, limestone sludge produced from the steel works process is used as a desulfurizing agent. Seven different types of additives are also used to improve the efficiency of the desulfurization process. As a result, alkaline additive is identified as the least effective additive, while certain types of organic acids show higher efficiency. It is also observed that the amount of FGD gypsum, which is a by-product of the FGD process, increases with the used of some of those additives.

Sintering prevention of Ag by the addition of 2-dimensional nanosheet (2차원 구조 나노시트의 첨가를 통한 Ag의 치밀화 방지)

  • Lee, Sang Eun;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.51-54
    • /
    • 2022
  • The physical properties of the noble metal current-collector used for fuel cells are greatly influenced by the material porosity. Therefore, increasing the porosity of the material studies has attracted much attention. One of the most representative strategies is to use porosity additives in sintering materials. The conventional porosity additive had a threedimensional structure of a spherical powder. In this study, porosity additive with 2-dimensional (2D) nanosheet was used to decrease the sintering density of Ag current-collector and its effect was confirmed. As a 2D layered structure material, 1 nm-thick RuO2 nanosheets were used as porosity additives.

Micronized Cellulose as a Paper Additive and a Carrier for Papermaking Chemicals

  • Ozersky, Alexander
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.05a
    • /
    • pp.33-55
    • /
    • 2007
  • This article portrays special cellulose fibers, which are designed to be a functional additive and a carrier for papermaking chemicals. The first part of the presentation deals with the micronized $ARBOCEL^{(R)}$ cellulose fibers, which are used as a functional paper/paperboard additive. In particular as a bulk and speed aid. The detailed description of the micronized $ARBOCEL^{(R)}$ fibers, their function and effects on papermaking process and paper products are given. The second part of the study describes the concept of fiber-based papermaking chemicals. A new generation of fiber-based papermaking chemicals were presented for the first time at the PTS Pulp Technology Symposium 2005, and then several articles were published in various magazine in Asia ("Paper Asia"), the US ("Pulp & Paper"). and Europe ("Wochenblatt fuel Papierfabrikation"). The information generated quite an interest in the paper industry. Extensive studies of these papermaking additives have been made recently, new information obtained, and the compounds have gained more recognition in the industry. The company J. Rettenmaier und Soehne developed a group of fiber-based papermaking additives. They include combination of fibers with sizing agents, starch, fluorochemicals, minerals, biocides and some others. This article presents in-depth study of the AKD modified micronized cellulose as an example of the fiber-based papermaking chemicals concept. The material of the present paper is based mostly on the results of the pilot paper machine study at the Paper Research Institute PTS (Heidenau, Germany), and includes case studies from the mills, which used $ARBOCELPLUS^{(R)}-AKD$ compounds. It should be noted that the $ARBOCELPLUS^{(R)}$ compounds were not designed to replace traditional additives in paper industry. They should rather be used in those areas, where application of "normal" chemicals is especially problematic

  • PDF