• Title/Summary/Keyword: Fruit diameter

Search Result 295, Processing Time 0.04 seconds

Effect of Long Term Waterlogging on the Growth and Nutrient Contents of 'Campbell Early' and 'Kyoho' Grapevine Cultivars (장기 침수가 포도 '캠벨얼리'와 '거봉' 품종의 생육과 양분함량에 미치는 영향)

  • Kang, Seok-Beom;Lee, In-Bog;Jang, Han-Ik;Park, Jin-Myeon;Moon, Doo-Khil
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2008
  • This work was carried out to investigate the effect of waterlogging on the growth and nutrient contents of 'Campbell Early' and 'Kyoho' grapevines under the vinyl house condition from June 14 to July 20, 2005. For the trial, seedlings of two-year-old grapevine were transplanted to 40 L pot with a sandy loam soil. Irrigation point of non-waterlogging(control) treatment was controlled at -40 kPa of soil water tension using tensiometer and waterlogging treatments were imposed for 35 days at the water levels of above 10 cm from the soil surface using tap water. The growth of aerial(shoot length, leaf number and stem diameter) and underground(root) parts of 'Campbell Early' and 'Kyoho' grapevines tended to be wholly reduced by waterlogging, while the growth of aerial parts were more severely impaired in 'Kyoho' than in 'Campbell Early' cultivar. The different responses for waterlogging between two grapevines seem to be related with the capacity for absorbing mineral nutrients, because nitrogen content of 'Campbell Early' cultivar leaves was significantly higher than that of 'Kyoho' cultivar although the contents of phosphorus and potassium in leaves of two grapevine cultivars were similarly declined. There was no significant different of fruit quality, such as contents of soluble solid, titratable acidity and weight of berry in 'Campbell Early' between waterlogging and control. In 'Kyoho' cultivar, however, berry weight and titratable acidity were decreased and soluble solid content was increased by waterlogging. It was assumed that waterlogging stress for grapevines promotes maturation and coloring processes of berries by stimulating maturation hormone such as ethylene. In conclusion, 'Campbell Early' cultivar seems to be more tolerable than 'Kyoho' cultivar when comparing the growth responses and nutrient contents between two grapevine cultivars under waterlogging.

Influence of Various Root Media in Pot Growth of 'Seolhyang' Strawberry on the Growth of Daughter Plants and Early Yield after Transplant ('설향' 딸기 포트육묘를 위한 혼합상토 종류가 자묘의 생육과 정식 후 초기수량에 미치는 영향)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.219-226
    • /
    • 2015
  • The objective of this research was to investigate the influence of various root media on the growth of mother and daughter plants during propagation and early yield after transplanting of 'Seolhyang' strawberry. To achieve this, daughter plants were fixed to connected small pots that contained expanded rice-hull (ERH), a strawberry-specialized commercial medium (SSCM), soil mother materials (SMM), or loamy sand (LS). Then, growth of daughter plants in above- and below-ground tissue as well as early yield after transplanting to plastic house soil were investigated. The growth of daughter plants in terms of plant height, leaf area and fresh weight were the highest in the SSCM treatment. Root growth in terms of the amount of primary roots and root dry weight were the highest in the treatments of ERH and SMM and the lowest in that of SSCM, among treatments tested. The ERH treatment also showed the highest values among treatments in root length, surface area and volume when roots with 0 to 0.4 mm in diameter were investigated. The flower bud differentiation of daughter plants began on Sept. 3 in the ERH treatments, earlier than the SMM (Sept. 5) and in SSCM (Sept. 7) treatments. The tissue N contents of daughter plants were in the range of 1.41 to 1.55% in all treatments, and no significant differences were observed among treatments. This indicates that the low moisture retention capacity of ERH and water stress, rather than tissue N contents, promote the flower differentiation of daughter plants. In the evaluation of early yield after transplant, the ERH treatment of showed the highest yield in the period from November to December, reaching 667 g fruit weight per 10 plants. The yields per 10 plants in the other treatments were 581 g in SMM, 475 g in SSCM and 295 g in LS. Above results imply that the various root media have different effects on the growth of daughter plants as well as flower bud differentiation. Therefore, improvement in early yield after transplant can be achieved through selection of proper root medium for daughter plant propagation.

In vitro and In vivo Antimicrobial Activities of Medicinal Plants against Crown Gall in Grapevine (포도나무 줄기혹병균에 대한 약용식물의 항균활성 및 병발생억제)

  • Kim, Eun Su;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.537-548
    • /
    • 2016
  • The objective of this study was to evaluate the antimicrobial activities of 9 kinds of medicinal plants against crown gall in grapevine. The medicinal plants extracted with several solvent systems were screened for in vitro antibacterial activity by the disc diffusion method. The ethanol and ethyl acetate extracts from magic lily flowers, tachys roots, asian plantain flowers and seeds, sweet wormwood leaves, stems and flowers, immature bitter melon fruits, cockscomb flowers, and peach tree resin showed in vitro antimicrobial activities against Rhizobium vitis with growth inhibition zones ranging from 10 to 27 mm in diameter. The minimum inhibitory concentration values of extracts against R.vitis ranged from 10,000 in Asian plantain flower and 50,000 fold diluted extracts in sweet wormwood flowers, stems, leaves, cockscomb leaves and immature bitter melon fruits. The active fractions of ethyl acetate and ethanol extracts from the medicinal plants were partially separated through silica gel column chromatography and thin layer chromatography (TLC). The active fractions were separated at Rf 0.36, 0.69, 0.75, 0.84, and 0.94 in sweet wormwood extracts, Rf 0.96 and 0.99 in cockscomb flower extracts, Rf 0.92 and 0.97 in cockscomb leaf extracts, and Rf 0.85 in immature bitter melon fruit extracts in TLC analysis developed with hexane:ethyl acetate (20:80, v/v) and methanol:chloroform (20:80, v/v). Among extracts from plants with in vitro antimicrobial activities, sweet wormwood, cockscomb leaves, and immature bitter melon fruits showed in vivo antimicrobial activities with inhibition activity of 100, 67, and 83.3%, respectively, in 'Kyoho' grapevine inoculated with R. vitis compared with the untreated control. These findings indicate that extracts of medicinal plants could be used as sustainable candidates to control crown gall disease caused by R. vitis in grapevines.

The Artificial Cultivation of Pleurotus eryngii (II) -Morphological Characteristics of Fruit Body and Cultural Conditions- (Pleurotus eryngii균의 인공재배 (II) -자실체의 형태적 특성 및 재배조건에 관하여-)

  • Kim, Han-Kyoung;Cheong, Jong-Chun;Seok, Soon-Ja;Kim, Gwang-Po;Cha, Dong-Yeul;Moon, Byung-Ju
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.311-319
    • /
    • 1997
  • These studies were carried out to develop an artificial cultivation method. The diameter and thickness of pileus ranged $1.5{\sim}7.0\;cm$ and $0.8{\sim}3.0\;cm$, respectively. The diameters of stipe were $1.2{\sim}2.5\;cm$ and the lengthes were $4.5{\sim}9.0\;cm$. The spore fingerprint was white. The sizes were spore $10.8{\sim}12.2{\times}4.35{\sim}5.65\;{\mu}m$, basidia $50.0{\sim}59.2{\times}7.4{\sim}7.8\;{\mu}m$, nalsistidia $21.75{\sim}28.7{\times}4.8{\sim}6.1\;{\mu}m$, pileus hymenium cell $50.6{\sim}66.0{\times}4.4{\sim}6.7\;{\mu}m$, and stipe hymenium cell $28.6{\sim}33.0{\times}5.5{\sim}6.6\;{\mu}m$. The thirty percent mixture of rice and wheat bran into sawdust gives the high density of mycelia and the good development of fruiting structure. The optimum water contents of sawdust substrates were $60{\sim}65%$ in which condition the mycelium grows well and gives high density. In PP bottle cultivation, the first fruiting period was $6{\sim}8$ days earlier in nonscratching samples than scratching ones, but the quantity of fruiting body was higher in scratching samples than nonscratching ones. In the case of PP bag cultivation, the first fruiting was 10 days faster, and the quantity of fruiting bodies was 30% higher in samples with 30% wheat bran than those with rice bran. The fleshiness of stipe was $2{\sim}3$ times harder than that of pileus.

  • PDF

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

Effect of Reduced Nitrogen Fertigation Rates on Growth and Yield of Tomato (질소 관비량 절감이 토마토 생육 및 수량에 미치는 효과)

  • Lee, In-Bog;Lim, Jae-Hyun;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.306-312
    • /
    • 2007
  • To investigate the effect of N fertigation on the growth, yield, and water and nitrogen use efficiencies during tomato cultivation, seedlings were transplanted in a sandy loam soil under plastic film house condition. 0, 88, 132, 176, $220\;kg\;ha^{-1}$ N rates, which correspond to 0 (NF0), 40 (NF40), 60 (NF60), 80 (NF80), 100% (NF100) N level of soil test-based N fertilization, were injected weekly through drip irrigation system for 15 weeks in N fertigation system, and the control (conventional N treatment) was installed for comparison. Herein, nitrogen was applied by top-dressing with 60% as a basal and 40% as additional fertilizer. There was little different in stem diameter growth among N fertigation treatments, but plant height and dry matter increased with increasing N fertigation rates as well as in N conventional treatment. Tomato yield was increased with increasing the number of marketable fruits in N fertigation treatments, and the fruit yield was maximized in NF 80 treatment ($176\;kg\;ha^{-1}$ N supply or $96.6\;mg\;L^{-1}$ N injection). Dry matter productivity and nitrogen uptake amount were significantly increased with increasing N fertigation rates. The ratio of fruits to the dry weight of whole plant was decreased with increasing N fertigation rates, but this ratio was $2.6{\sim}5.3%$ higher in N fertigation treatments than in the control. In addition, the ratios of nitrogen distributed toward fruits in N fertigation treatments were $3.7{\sim}21.7%$ higher than that of control. The apparent N recovery percentages showed significantly higher values as $71.8{\sim}102.3%$ in N fertigation treatments, compared to 45% in N conventional treatment. Water use efficiency was significantly increased by fertigation system with the maximum $361\;kg/ha\;cm^{-1}$ in NF 80, which is comparable to $324\;kg/ha\;cm^{-1}$ of the conventional treatment. Conclusively, N fertigation system was effective on increasing tomato productivity and nutrient efficiency as well as 20% reduction of N fertilization level.

Effect of Potassium Fertigation Level on Growth and Yield of 'Campbell Early' Grapevine (Vitis labrusca L.) in Open Field (노지 포도재배에서 칼륨관비 수준에 따른 과실의 수량 및 품질 변화)

  • Kang, Seok-Beom;Lee, In-Bog;Park, Jin-Myeon;Song, Yang-Ik;Kweon, Hun-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • BACKGROUND: This experiment was carried out to evaluate the effect of potassium fertigation on the growth and yield of fourteen years-old 'Campbell Early' grapevine (Vitis labrusca L.) on a sandy loam soil. METHODS AND RESULTS: Potassium application (125 kg/ha/yr) was top-dressed as 30% of annual potassium application in all treatments and the remainders were drip-irrigated with 0 (0% of total K, K0 level of the remainder), 25 (17.5% of total K, K1/4 level of the remainder), 50 (35% of total K, K1/2 level), and 100mg/L (70% of total K, K1 level) in the intervals of 2 times a week for 12 weeks and the effect of K drip fertigation was compared to control treatment in which the K remainder was applied with surface application as additional fertilizer. The growth of stem diameter, leaf number and shoot length were highest in K1/2 (50 mg/L K), but K of mineral contents was lowest in K0. Yield of grapevine was no difference in 2008, but significantly higher K1/2 than other treatments in 2009. However, fruit quality (color degree, brix, acid contents) was no difference among the treatment. CONCLUSION(s): From the results, It is expected that K1/2 levels of fertigation based on soil testing could be more efficient to get optimum yield and save potassium fertilizer than control (surface application) treatments when grapevine was drip-irrigated at open field condition.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Effect of Zero Drainage Using Drainage Zero Sensor on Root Zone Environment, Growth and Yield in Tomato Rockwool Culture (토마토 수경재배 시 배액제로 센서를 이용한 배액제로화가 근권환경, 생육 및 수량에 미치는 영향)

  • Hwang, Yeon-Hyeon;An, Chul-Geon;Chang, Young-Ho;Yoon, Hae-Suk;An, Jae-Uk;Shon, Gil-Man;Rho, Chi-Woong;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This study was carried out to investigate the effect of irrigation method adopted for reducing nutrient solution drainage on the root zone environment, growth and yield of a tomato crop grown in a rockwool medium. The irrigation control methods used were large quantity irrigation at a long interval controlled by only an integrated solar radiation sensor (standard), medium quantity irrigation at a medium interval (zero drainage 1), and small quantity irrigation at a short interval (zero drainage 2) controlled by both an integrated solar radiation sensor and a zero drainage sensor. The amount of the nutrient solution supplied and the drain percentage per plant of the standard, zero drainage 1, and zero drainage 2 were 1.4, 0.9 and 0.8 L, and 23.8, 8.6 and 3.7%, respectively. The average, minimum, and maximum water contents and EC of the standard, zero drainage 1, and zero drainage 2 were 64.5~88% and $1.5{\sim}3.5dS{\cdot}m^{-2}$, 40.3~76.0% and $2.5{\sim}4.0dS{\cdot}m^{-2}$, and 56.3~69.0% and $2.7{\sim}3.7dS{\cdot}m^{-2}$, respectively. There was no difference in leaf width, number of leaves, and stem diameter among the treatments. However, plant height and leaf length decreased in the zero drainage 1 and 2 treatments as compared to the standard. The fruit marketable yield per 10a in the zero drainage 1 and 2 treatments was about 93 and 88%, respectively, of that in the standard treatment.