토마토 수경재배 시 배액제로 센서를 이용한 배액제로화가 근권환경, 생육 및 수량에 미치는 영향

Effect of Zero Drainage Using Drainage Zero Sensor on Root Zone Environment, Growth and Yield in Tomato Rockwool Culture

  • 황연현 (경상남도농업기술원 수출농식품연구과) ;
  • 안철근 (경상남도농업기술원 수출농식품연구과) ;
  • 장영호 (경상남도농업기술원 수출농식품연구과) ;
  • 윤혜숙 (경상남도농업기술원 수출농식품연구과) ;
  • 안재욱 (경상남도농업기술원 수출농식품연구과) ;
  • 손길만 (경상남도농업기술원 수출농식품연구과) ;
  • 노치웅 (경상남도농업기술원 수출농식품연구과) ;
  • 정병룡 (경상대학교 응용생명과학부 원예학과)
  • Hwang, Yeon-Hyeon (Gyeongnam Agriculture Research & Extension Services) ;
  • An, Chul-Geon (Gyeongnam Agriculture Research & Extension Services) ;
  • Chang, Young-Ho (Gyeongnam Agriculture Research & Extension Services) ;
  • Yoon, Hae-Suk (Gyeongnam Agriculture Research & Extension Services) ;
  • An, Jae-Uk (Gyeongnam Agriculture Research & Extension Services) ;
  • Shon, Gil-Man (Gyeongnam Agriculture Research & Extension Services) ;
  • Rho, Chi-Woong (Gyeongnam Agriculture Research & Extension Services) ;
  • Jeong, Byoung-Ryong (Depatment of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 투고 : 2012.10.09
  • 심사 : 2012.10.26
  • 발행 : 2012.12.31

초록

폐양액 발생을 최소화할 수 있는 배액제로형 수경재배기술 개발을 위하여 토마토 수경재배 시 배액제로 센서를 이용하여 배액을 제로화 또는 최소화하였을 때 표준배액량 처리와 비교하여 근권환경 변화와 토마토의 생육, 수량, 품질 등에 미치는 영향을 구명하였다. 처리별 주당 1일 공급량은 표준배액률 처리가 1.4, 배액제로 1처리가 0.9, 배액제로 2처리가 0.8L이었고, 배액률은 표준배액률 처리가 23.8, 배액제로 1처리가 8.6, 배액제로 2 처리가 3.7%이었다. 표준배액률 처리, 배액제로 1과, 2처리의 함수율과 배지 내 EC는 각각 64.5~88.0%와 $1.5{\sim}3.5dS{\cdot}m^{-1}$, 40.3~76.0%와 $2.5{\sim}4.0dS{\cdot}m^{-1}$, 그리고 56.3~69.0%, $2.7{\sim}3.7dS{\cdot}m^{-1}$이었다. 토마토 생육은 표준배액률 처리에 비해 배액제로 처리에서 엽장, 엽수, 경경은 차이가 없었으나, 초장과 엽폭이 작은 경향을 보였다. 토마토 수량은 표준배액률 처리에 비해 배액제로 처리에서 상품수량이 7.7~12% 적고 1과중이 작았으나, 당도는 반대로 높았고 상품과률은 차이가 없었다.

This study was carried out to investigate the effect of irrigation method adopted for reducing nutrient solution drainage on the root zone environment, growth and yield of a tomato crop grown in a rockwool medium. The irrigation control methods used were large quantity irrigation at a long interval controlled by only an integrated solar radiation sensor (standard), medium quantity irrigation at a medium interval (zero drainage 1), and small quantity irrigation at a short interval (zero drainage 2) controlled by both an integrated solar radiation sensor and a zero drainage sensor. The amount of the nutrient solution supplied and the drain percentage per plant of the standard, zero drainage 1, and zero drainage 2 were 1.4, 0.9 and 0.8 L, and 23.8, 8.6 and 3.7%, respectively. The average, minimum, and maximum water contents and EC of the standard, zero drainage 1, and zero drainage 2 were 64.5~88% and $1.5{\sim}3.5dS{\cdot}m^{-2}$, 40.3~76.0% and $2.5{\sim}4.0dS{\cdot}m^{-2}$, and 56.3~69.0% and $2.7{\sim}3.7dS{\cdot}m^{-2}$, respectively. There was no difference in leaf width, number of leaves, and stem diameter among the treatments. However, plant height and leaf length decreased in the zero drainage 1 and 2 treatments as compared to the standard. The fruit marketable yield per 10a in the zero drainage 1 and 2 treatments was about 93 and 88%, respectively, of that in the standard treatment.

키워드

참고문헌

  1. Adams, P. and L.C. Ho. 1995. Differential effects of salinity and humidity on growth and Ca status of tomato and cucumber grown in hydroponic culture. Acta Hort. 401:357-363.
  2. Aljibury, F.K. and D. May. 1970. Irrigation schedules and production of processing tomatoes on the San Joaquin Valley Westside. Calif. Agr. 24(8):10-11.
  3. An, C.G., Y.H. Hwang, H.S. Yoon, H.J. Hwang, G.M. Shon, G.W. Song, and B.R. Jeong. 2005. Effect of drain ratio during fruiting period on growth and yield of sweet pepper (Capsicum annuum 'Jubilee') in rockwool culture. Kor. J. Hort. Sci. Technol. 23(3):256-260.
  4. Benoit, F. 1992. Practical guide for simple soilless culture techniques. Europ. Vegetable R & D Centre, Belgium. p. 28-37.
  5. Hayata, Y., T. Tabe, S. Kondo, and K. Inoue. 1998. The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. J. Japan. Soc. Hort. Sci. 65:759-766.
  6. Li, X.R., H.N. Cao, K.C. Yoo, and I.S. Kim. 2001. Effect of limited supplying frequency and amount of nutrient solutions on the yield and fruit quality of tomato grown in ash ball. J. Kor. Soc. Hort. Sci. 42: 501-505.
  7. Kim, H.J., J.H. Kim, Y.H. Woo, W.S. Kim, and Y.I. Nam. 2001. Nutrient and water uptake of tomato plants by growth stage in closed perlite culture. J. Kor. Soc. Hort. Sci. 42(3):254-258.
  8. Kim, S.E., S.Y. Sim, and Y.S. Kim. 2010. Comparison on irrigation management methods by integrated solar radiation and drainage level sensor in rockwool and coir bag culture for tomato. J. of Bio-Environ. Con. 19(1):12-18.
  9. Nichols, M.A., K.J. Fisher, L.S. Morgan, and A. Simon. 1994. Osmotic stress, yield and quality of hydroponic tomatoes. Acta Hort. 361:302-310.
  10. RDA. 2011. Statistical data of soilless culture area in Korea. RDA.
  11. Schon, M.K. and M.P. Compton. 1997. Comparison of cucumbers grown in rockwool or perlite at two leaching fractions. HortTech. 7:30-33.
  12. Shimaji, H. 1990. Control equipments on soilless culture. Agri. and Hort. 65:104-110.
  13. Smith, D.L. 1988. Rockwool in horticulture. p.24-72. Grower Books, London.
  14. Xu, H.L., L. Gauthier, and A. Gosselin. 1997. Greenhouse tomato photosynthetic accumulation to water deficit and response to salt accumulation in the substrate. J. Japan. Soc, Hort. Sci. 65:777-784. https://doi.org/10.2503/jjshs.65.777