• Title/Summary/Keyword: Frost ratio

Search Result 87, Processing Time 0.025 seconds

A Study on the Evaluation of Frost Damage of High-Flowing Concrete using Blast-Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 시공을 위한 내동해성의 평가)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.157-162
    • /
    • 2001
  • Recently, lots of studies for high flowing concrete have been suggested under practical use that it is only a way to solve the confronted problem. However, most studies have been concentrated on the manufacture method and properties of fresh concrete, but there is few studies for the durability of hardened concrete, specially for the freezing and thawing. Therefore this study is to investigate for the resistance of high-flowing concrete using finely ground granulated furnace blast slag to frost with experimental parameters, such as binder, ratio of replacement of granulated furnace blast slag, superplasticizer, curing method and blain surface area of granulated furnace blast slag.

  • PDF

Evaluation of Chloride Penetration Resistance of Frost Concrete according to the water-cement ratio, during the Cold Wave (한파로 인한 초기 동해를 입은 콘크리트의 염해 저항성 평가)

  • Park, Dong-Cheon;Lee, Jun-Hae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.165-166
    • /
    • 2020
  • The climate on the Korean Peninsula has been warmed recently, abnormal weather conditions such as heat waves, cold waves, and tropical nights have been detected frequently. Precisely, the number of days with cold waves in the winter has increased, and rapid changes of temperature in the morning and afternoon have occurred frequently in the 2000s. Due to the previous phenomenons, this research is focused on evaluating the concrete's Chloride Penetration Resistance and Durability, and the difference of the resistance according to the W/C.

  • PDF

A Study on the Development of Heat-Recovery Ventilator for Preventing Freezing in a Cold Weather (혹한기 결빙 방지를 위한 열회수형 환기장치 개발에 관한 연구)

  • Park, Woo-Cheul;Kim, Il-Gyoum;Tae, Kyung-Eung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.593-598
    • /
    • 2018
  • Computational fluid dynamics was used to develop a heat-recovery ventilator for preventing freezing in cold weather. An optimal internal return damper was applied, and a prototype was made for frost and freezing experiments. A total of 16 models were used to design the optimal internal return damper with the maximum exhaust recirculation ratio. The exhaust recirculation ratio of the exhaust air to the outdoor air was 59.9-62.3%. The tests showed that frost and freezing did not occur at outdoor air temperatures of $-15^{\circ}C$ or higher in both exhaust recirculation operation and normal operation. However, at an outdoor air temperature of $-20^{\circ}C$, no freezing occurred in the outdoor air area when the internal return damper was opened by 45 degrees. Heat recovery ventilators for preventing cold weather frost and freezing should be operated in two operation modes: normal and exhaust recirculation mode. An operating algorithm was developed for the heat-recovery ventilator operating in normal mode when the outdoor temperature is higher than $-15^{\circ}C$ and recirculation mode when the temperature is lower.

Effect of XPS and Polyethylene Aggregates in Model Tests for Prevention of Frost Heave in Railroad Track (철도에서의 동상방지를 위한 모형시험에서 XPS 및 PE골재의 설치 효과)

  • Kim, Donggwan;Yoon, Yeowon;Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.5-13
    • /
    • 2014
  • In this research, in order to study insulation effect of commercial XPS and recycled PE aggregates for prevention of frost heave in the roadbed of railroad track from the freezing temperature, model tests were carried out in the large freezing room. For this, thermal conductivities were measured for various dry densities, water contents, temperatures and mixing ratios of PE aggregates. From the tests, it can be seen that thermal conductivities of roadbed decrease with the increase of the ratio of mixed PE aggregates. However it was sensitive to the changes of temperature and water content due to the amount of water in the voids. From the model test of railroad track, it can be seen that the time to reach $0^{\circ}C$ was longer for XPS than that for the PE aggregates. Also the test shows best insulation effect can be achieved when XPS board was installed above the PE aggregate layer rather than the opposite order.

Application of Paper Sludge Ash-Stabilized Soft Ground for Subgrade Soil (제지애쉬 고화제로 안정처리된 연약지반의 도로노상토 적용에 관한 연구)

  • Shin, Eunchul;Park, Sooyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.6
    • /
    • pp.13-22
    • /
    • 2018
  • The southwestern part of Korean Peninsula, which length is about 13,000 km, is largely formed with soft cohesive soil ground and when it is developed, the low bearing capacity and excessive settlement of soft ground give many problems. In particular, a lot of clayey soil is deserted due to high moisture content and weakness, and areas formed with soft ground. In this study it was performed unconfined compression test, CBR tests, laboratory frost heaving test, and wheel tracking test in order to determine the optimum mixture ratio of paper sludge ash added chemical stabilizer with soft soil for consideration of its frost heaving and strength characteristics. As a results of the above experiments, when the soft soil is mixed with 6% of chemical stabilizer to improve the soft soil for utilizing as a subgrade soil material. It is satisfied the quality standard of fill materials, and the results of this research are expected to be used as an appropriate usage standard for utilization of on-site soil generated.

The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water (염화물이 함유된 동결수의 동결융해 작용에 따른 콘크리트의 내동해성과 표면열화 평가)

  • Kim, Gyu-Yong;Kim, Moo-Han;Cho, Bong-Suk;Lee, Seung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.143-151
    • /
    • 2007
  • This study presents the experimental results of frost durability including resistance to freezing-thawing and surface scaling of concrete. Mixing design was proportioned with the various water-binder ratio between 0.37 and 0.47 and three different binder compositions corresponding to Type I cement without any supplementary cementitious materials(OPC), Type II cement with 50% blast-furnace slag replacement(BFS50), and ternary cement with Type III cement, 15% fly ash, and 35% slag replacement (BFS35%+FA15%). Test results showed that the mixing design with BFS50% and BFS35%+FA15% exhibited higher durability factor than that made with OPC only. Finally, the use of blend cement containing slag can be used effectively in terms of frost durability of the concrete exposed to severe condition under coastal environment like as flying salt, sea water spray, etc.

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

Experimental Study on the Frost Deterioration Meterioration Mechanism of Concrete (콘크리트의 동해열화 메커니즘에 관한 실험적 연구)

  • 이승한;이순환;정해구;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.169-174
    • /
    • 1996
  • It have been announced that concrete subjected to freezing and thawing cause deterioration by expanded inside water and contracted at thawing. However, this study descrebe the deterioration mechanism of concrete by freezing and thawing test. Embeded strain gauges were used to measure the inside restrict strain due to the temperature differenct inside and outside the concrete test specimens. Test results showed that using the air entrained admixture and expanded poly-styrene was developed durability of concrete by decreasing inside retrict strain ratio.

  • PDF

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Performance Research of a Multi Functional Tree Protection Pad (다목적 기능을 가진 수목보호패드의 성능 연구)

  • Jung, Yong-Jo;Lee, Kyung-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.133-143
    • /
    • 2018
  • In spite of the growing importance of landscaping trees, the rate of flawed and withered trees damaged by pest, disease, drought or frost is increasing. In order to evaluate the performance of the Tree Protective Pad, which are developed to reduce the failure ratio in landscape planting, the tree protective pad for 'digging', 'pest controlling', and 'insulating' are tested based on the five functional criteria; moisturizing effect, wither preventive effect, pest and disease control, thermal effect, tensile strength, and environmental performance. The result of this study is as follows. The moisturizing effect of the tree protective pad for digging is found to be outstanding. According to the result of testing the pad on trees, in particular, it is better than jute tape in wither preventive effect, which means it is expected to prevent flaw and wilt from planting during the improper seasons like summertime. The experiment of installing the protective tree pad for pest controlling to the trunk of Quercus mongolica shows that preventive effect of the pad from diseases and insects is superior, and it also has economical effect by reducing the use of agricultural chemicals. The comparative test of the pad for insulating and jute tape proves that the temperature of the pad is about $2^{\circ}C$ higher than outside. The rate of tensile strength and biodegradation of the pad exceeds the optimal level, so it is revealed that the pad may be the work efficient and environment-friendly product. Likewise, by timely irrigating trees, the tree protective pad economically prevents trees from pest, disease,drought or frost, which may be caused by improper seasonal or delayed planting. As a means of reducing the flaw and facilitating the growth of trees, the exceptional performance of the pad is expected to effectively used in landscape planting and management.