• Title/Summary/Keyword: Front-End

Search Result 1,018, Processing Time 0.027 seconds

Millimeter-wave LTCC Front-end Module for Highly Integrated Transceiver (고집적 송수신기를 위한 밀리미터파 LTCC Front-end 모듈)

  • Kim, Bong-Su;Byun, Woo-Jin;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.967-975
    • /
    • 2006
  • In this paper, design and implementation of a very compact and cost effective front-end module are presented for IEEE 802.16 FWA(fixed Wireless Access) in the 40 GHz band. A multi-layer LTCC(Low Temperature Co-fred Ceramic) technology with cavity process to achieve excellent electrical performances is used to fabricate the front-end module. The wirebond matching circuit design of switch input/output port and waveguide transition to connect antenna are optimally designed to keep transmission loss low. To reduce the size of the front-end module, the dielectric waveguide filter is developed instead of the metal waveguide filter. The LTCC is composed of 6 layers(with the thickness of a layer of 100 um) having a relative dielectric constant of 7.1. The front-end module is implemented in a volume of $30{\times}7{\times}0.8mm^3$ and shows an overall insertion loss < 5.3 dB, and image rejection value > 49 dB.

A New Fault-Based Built-In Self-Test Scheme for 1.8GHz RF Front-End (1.8GHz 고주파 전단부의 결함 검사를 위한 새로운 BIST 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents a new low-cost fault-based Built-In Self-Test (BIST) scheme and technique for 1.8GHz RF receiver front end. The technique utilizes input impedance matching measurement. The BIST block and RF receiver front end are designed using 0.25m CMOS technology on a single chip. The technique is simple and inexpensive. The overhead of the BIST circuit is approximately $10\%$ of the total area of the RF front end.

An Analog Front-End Circuit for ISO/IEC 14443-Compatible RFID Interrogators

  • Min, Kyung-Won;Chai, Suk-Byung;Kim, Shi-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.560-564
    • /
    • 2004
  • An analog front-end circuit for ISO/IEC 14443-compatible radio frequency identification (RFID) interrogators was designed and fabricated by using a $0.25{\mu}m$ double-poly CMOS process. The fabricated chip was operated using a 3.3 Volt single-voltage supply. The results of this work could be provided as reusable IPs in the form of hard or firm IPs for designing single-chip ISO/IEC 14443-compatible RFID interrogators.

  • PDF

A Low-Power 2.4 GHz CMOS RF Front-End with Temperature Compensation

  • Kwon, Yong-Il;Jung, Sang-Woon;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • In this paper, a low-power 2.4 GHz front-end for sensor network application (IEEE 802.15.4 LR-WPAN) is designed in a 0.18 um CMOS process. A power supply circuit with a novel temperature-compensation scheme is presented. The simulation and measurement results show that the front-end (LNA, Mixer) can achieve a voltage gain of 35.3 dB and a noise figure(NF) of 3.1 dB while consuming 5.04 mW (LNA: 2.16 mW, Mixer: 2.88 mW) of power at $27^{\circ}C$. The NF includes the loss of BALUN and BPF. The low-IF architecture is used. The voltage gain, noise figure and third-order intercept point (IIP3) variations over -45$^{\circ}C$ to 85$^{\circ}C$ are less than 0.2 dB, 0.25 dB and 1.5 dB, respectively.

A 3.6/4.8 mW L1/L5 Dual-band RF Front-end for GPS/Galileo Receiver in $0.13{\mu}m$ CMOS Technology (L1/L5 밴드 GPS/Galileo 수신기를 위한 $0.13{\mu}m$ 3.6/4.8 mW CMOS RF 수신 회로)

  • Lee, Hyung-Su;Cho, Sang-Hyun;Ko, Jin-Ho;Nam, Il-Ku
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.421-422
    • /
    • 2008
  • In this paper, CMOS RF front-end circuits for an L1/L5 dual-band global positioning system (GPS)/Galileo receiver are designed in $0.13\;{\mu}m$ CMOS technology. The RF front-end circuits are composed of an RF single-to-differential low noise amplifier, an RF polyphase filter, two down-conversion mixers, two transimpedance amplifiers, a IF polyphase filter, four de-coupling capacitors. The CMOS RF front-end circuits provide gains of 43 dB and 44 dB, noise figures of 4 dB and 3 dB and consume 3.6 mW and 4.8 mW from 1.2 V supply voltage for L1 and L5, respectively.

  • PDF

Design of 900MHz CMOS RF Front-End IC for Digital TV Tuner (디지털 TV 튜너용 900MHz CMOS RF Front-End IC의 설계 및 구현)

  • 김성도;유현규;이상국
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.104-107
    • /
    • 2000
  • We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.

  • PDF

A Study on Structural Analysis of an Aluminum Electric Motor Car with a Modular Front End made of composite materials (모듈형 복합재 전두부가 적용된 전동차의 구조해석 연구)

  • 노규석;구정서;이현순
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.247-252
    • /
    • 2001
  • In this study, an aluminum electric motor car with a modular front end made of composite materials is numerically evaluated applying the standard specifications for the urban EMU(Electric Multiple Unit) train. Structural analyses under compressive load, torsional load and free vibration satisfy the standard specifications, but analysis under normal load doesn't. By the way, the aluminum bodyshell of the car except the modular front end is almost same to that of the Korean standard EMU, which satisfy the standard specifications. It is presumed that the stiffness of the modular front end made of composite materials haves some influence on the strength of the aluminum bodyshell.

  • PDF

Development of Lightweight Front End Carrier of Aluminum Sheet (경량 알루미늄 소재 적용 Front End Carrier 개발)

  • Kang D. P.;Lee B. P.;Roh S. K.;Kim D. U.;Lee W. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • While all-aluminum front end carriers have been frequently used by major foreign auto-makers, the carriers domestically produced are typically hybrid types. It is understood that higher fuel efficiency due to weight reduction can be achieved by using aluminum carriers because of aluminum's light weight. Moreover, aluminum is expected to posess high corrosion resistance and recyling rate. As a first step to enhance feasibility of domestic production of all-aluminum carriers, several carriers made by advanced auto makers are examined and compared. Besides basic characteristics such as appearance and weight, physical properties including composition, strength and elongation are carefully analyzed to obtain critical design and process factors.

  • PDF

A Study on Structural Analysis of An Aluminum Bodyshell with A Modular Front End Made of Composite Materials (모듈형 복합재 전두부가 적용된 알루미늄 차체의 구조해석 연구)

  • 구정서;조현직;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.273-278
    • /
    • 2003
  • In this study, an aluminum bodyshell with a modular front end made of composite materials is numerically evaluated applying the standard specifications for the urban EMU (Electric Multiple Unit) train. Structural analyses under compressive load, torsional load and free vibration satisfy the standard specifications, but analysis under normal load doesn't. By the way, the aluminum bodyshell of the car except the modular front end is almost same to that of the Korean standard EMU, which satisfy the standard specifications. It is presumed that the stiffness of the modular front end made of composite materials has some influence on the strength of the aluminum bodyshell.