• Title/Summary/Keyword: Frobenius

Search Result 99, Processing Time 0.023 seconds

A reordering scheme for the vectorizable preconditioner for the large sparse linear systems on the CRAY-2 (CRAY-2에서의 대형희귀행렬 연립방정식의 해법을 위한 벡터준비행렬의 재배열 방법)

  • Ma, Sang-Baek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.960-968
    • /
    • 1995
  • In this paper we present a reordering scheme that could lead to efficient vectorization of the preconditioners for the large sparse linear systems arising from partial differential equations on the CRAY-2, This reordering scheme is a line version of the conventional red/black ordering. This reordering scheme, coupled with a variant of ILU(Incomplete LU) preconditioning, can overcome the poor rate of convergence of the conventional red/black reordering, if relatively large number of fill-ins were used. We substantiate our claim by conducting various experiments on the CRAY-2 machine. Also, the computation of the Frobenius norm of the error matrices agree with our claim.

  • PDF

Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass (집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

CONDITION NUMBER FOR THE W- WEIGHTED DRAZIN INVERSE AND ITS APPLICATIONS IN THE SOLUTION OF RECTANGULAR LINEAR SYSTEM

  • CUI XIAOKE;DIAO HUAIAN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.35-59
    • /
    • 2006
  • In this paper, we generalized the results of [23, 26], and get the results of the condition number of the W-weighted Drazin-inverse solution of linear system W AW\chi=b, where A is an $m{\times}n$ rank-deficient matrix and the index of A W is $k_1$, the index of W A is $k_2$, b is a real vector of size n in the range of $(WA)^{k_2}$, $\chi$ is a real vector of size m in the range of $(AW)^{k_1}$. Let $\alpha$ and $\beta$ be two positive real numbers, when we consider the weighted Frobenius norm $\|[{\alpha}W\;AW,\;{\beta}b]\|$(equation omitted) on the data we get the formula of condition number of the W-weighted Drazin-inverse solution of linear system. For the normwise condition number, the sensitivity of the relative condition number itself is studied, and the componentwise perturbation is also investigated.

Complete lower bound solutions of circular plate collapse problems by a finite difference method (원형평판의 붕괴문제에 관한 유한차분 완전 하계해)

  • Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1382-1390
    • /
    • 1990
  • Accurate load-carrying capacities and moment distributions of thin circular plates are obtained for clamped or simply-supported boundary condition under various concentrated circular loadings. The material is regarded as perfectly-plastic based on an arbitrary yield function such as the Tresca yield function, the Johansen yield function, and the farmily of .betha.-norms which possesses the von Mises yield function and the Frobenius norm. To obtain the lower bound solutions, a maximization formulation is derived and implemented for efficient numerical calculation with a finite difference method and the modified Newton's method. The numerical results demonstrate plastic collapse behavior of circular plates and provide their design criteria.

Exact Solution for Bending Vibration of Rotating Cantilever Beam with Tapered Width Using Transfer Matrix Method (전달행렬법을 이용하여 폭이 테이퍼진 회전하는 외팔보의 정확한 굽힘 진동해석)

  • Lee, Jung Woo;Kwak, Jong Hoon;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • In this study, a transfer matrix method in which can produce an infinite number of accurate natural frequencies using a single element for the bending vibration of rotating Bernoulli-Euler beam with linearly reduced width, is developed. The roots of the differential equation in the proposed method are calculated using the Frobenius method in the power series solution. To demonstrate the accuracy of the method, the calculated natural frequencies are compared with the results given by using the commercial finite element analysis program(ANSYS), and the comparison results between these two methods show the excellent agreement. Based on the comparison results, a parametric study is performed to investigate the effect of the centrifugal forces on the non-dimensional natural frequencies for rotating beam with the variable width.

Improvement on Bailey-Paar's Optimal Extension Field Arithmetic (Bailey-Paar 최적확장체 연산의 개선)

  • Lee, Mun-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.327-331
    • /
    • 2008
  • Optimal Extension Fields (OEFs) are finite fields of a special form which are very useful for software implementation of elliptic curve cryptosystems. Bailey and Paar introduced efficient OEF arithmetic algorithms including the $p^ith$ powering operation, and an efficient algorithm to construct OEFs for cryptographic use. In this paper, we give a counterexample where their $p^ith$ powering algorithm does not work, and show that their OEF construction algorithm is faulty, i.e., it may produce some non-OEFs as output. We present improved algorithms which correct these problems, and give improved statistics for the number of OEFs.

A study on the control-in-the-small characteristics of a planar parallel mechanism (평면형 병렬 메카니즘의 국소적 제어 특성에 관한 연구)

  • Kim, Whee-kuk;Cho, Whang;Kim, Jae-Seoub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.360-371
    • /
    • 1998
  • In this paper, output precision characteristics of a planar 6 degree-of-freedom parallel mechanisms are investigated, where the 6 degree-of-freedom mechanism is formed by adding an additional link along with an actuated joint in each serial subchain of the planar 3 degree-of-freedom parallel mechanism. Kinematic analysis for the parallel mechanism is performed, and its first-order kinematic characteristics are examined via kinematic isotropic index, maximum and minimum input-output velocity transmission ratios of the mechanisms. Based on this analysis, two types of planar 6 degrees-of-freedom parallel manipulators are selected. Then, dynamic characteristics of the two selected planar 6 degree-of-freedom parallel mechanisms, via Frobenius norms of inertia matrix and power modeling array, are investigated to compare the magnitudes of required control efforts of both three large actuators and three small actuators when the link lengths of three additional links are changed. It can be concluded from the analysis results that each of these two planar 6 degrees-of-freedom parallel mechanisms has an excellent control-in-the-small characteristics and therefore, it can be very effectively employed as a high-precision macro-micro manipulator when both its link lengths and locations of small and large actuators are properly chosen.

  • PDF

Combination of Brain Cancer with Hybrid K-NN Algorithm using Statistical of Cerebrospinal Fluid (CSF) Surgery

  • Saeed, Soobia;Abdullah, Afnizanfaizal;Jhanjhi, NZ
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.120-130
    • /
    • 2021
  • The spinal cord or CSF surgery is a very complex process. It requires continuous pre and post-surgery evaluation to have a better ability to diagnose the disease. To detect automatically the suspected areas of tumors and symptoms of CSF leakage during the development of the tumor inside of the brain. We propose a new method based on using computer software that generates statistical results through data gathered during surgeries and operations. We performed statistical computation and data collection through the Google Source for the UK National Cancer Database. The purpose of this study is to address the above problems related to the accuracy of missing hybrid KNN values and finding the distance of tumor in terms of brain cancer or CSF images. This research aims to create a framework that can classify the damaged area of cancer or tumors using high-dimensional image segmentation and Laplace transformation method. A high-dimensional image segmentation method is implemented by software modelling techniques with measures the width, percentage, and size of cells within the brain, as well as enhance the efficiency of the hybrid KNN algorithm and Laplace transformation make it deal the non-zero values in terms of missing values form with the using of Frobenius Matrix for deal the space into non-zero values. Our proposed algorithm takes the longest values of KNN (K = 1-100), which is successfully demonstrated in a 4-dimensional modulation method that monitors the lighting field that can be used in the field of light emission. Conclusion: This approach dramatically improves the efficiency of hybrid KNN method and the detection of tumor region using 4-D segmentation method. The simulation results verified the performance of the proposed method is improved by 92% sensitivity of 60% specificity and 70.50% accuracy respectively.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.