• Title/Summary/Keyword: Frictional reinforcement

Search Result 32, Processing Time 0.025 seconds

Pullout Parameter According to the Length of Spreading of Extensible Geogrid Reinforcement (신장성 지오그리드 보강재의 포설길이에 따른 인발정수)

  • Park, Jong-Beom;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.241-249
    • /
    • 2017
  • In a reinforced soil structure, the interaction between soil and an reinforcement occurs due to the frictional resistance on the contact surface between them or the pullout resistance of the reinforcement. Generally, a pullout test is conducted to measure pullout parameters of extensible geogrids. The factors affecting the pullout parameters in a pullout test include a density of backfill, shape of reinforcements, overburden pressure, length of spread reinforcements, and so on. The purpose of this study is to suggest a length of the spreading of an extensible reinforcement that can be used in estimating suitable pullout parameters of a pullout test. To this end, a pullout test was carried out. For the test, the length of spreading of an extensible reinforcement was set as 32 cm, 52 cm, 72 cm, and 100 cm, and effects of the lengths on pullout parameters were analyzed. As a result of the pullout test, it was confirmed that the frictional resistance between the soil and the reinforcement increases with the increase of the length of the reinforcement.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members (지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가)

  • Jung, Sung-Gyu;Kim, Juhyong;Cho, Samdeok;Lee, Kwangwu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.77-86
    • /
    • 2013
  • Laboratory pullout tests were conducted to evaluate pullout performance of steel strip reinforcements with deformed steel bars as transverse members. The steel strip reinforcement has an installation hole to assemble a deformed steel bar. Jumunjin standard sand is used to form a relative density of ground model to 80%. Frictional resistance of steel strip reinforcement without transverse member increases sharply at the initial displacement and quickly decreases with displacement. Maximum frictional resistance increases linearly as normal pressure increasing, and soil-reinforcement interaction friction angle(${\rho}_{peak}$) of a steel strip reinforcement is estimated to $14.64^{\circ}$. Passive resistance increases with displacement and converge into maximum passive resistance in most cases. Maximum passive resistance increases linearly as normal pressure increasing irrespective of shape of the steel reinforcement. Pullout force of steel strip reinforcements with installation holes or transverse members largely increases about 4 to 7 times compared to frictional resistance force of steel strip reinforcements when embedment length($L_e$) of steel strip reinforcements is 500 mm. In the case of using 2 transverse members, interference effect is observed due to the spacing of 2 transverse members and location of assembly holes and transverse members.

Pullout Resistance of Geogrid Reinforced Soil according to Compaction Degree (흙의 다짐도에 따른 인발저항특성 연구)

  • 주재우;김병욱;박종범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.11-20
    • /
    • 1999
  • The method which makes the soft ground reinforced by using the geogrid, a kind of geosynthetics has been getting popular and its usefulness also has been increased due to reduction in costs, ease of construction and great exterior view, But the study on the frictional characteristics, which is the important factor in design, between reinforcement and soil is insufficient. In this study, compaction degrees were considered through large-scale pullout tests. As a part of studying on estimation of pullout frictional characteristics between soil and geosynthetics, pullout tests were peformed and from the result of pullout tests, pullout frictional parameters between soil and geosynthetics were obtained and pullout behaviors were learned.

  • PDF

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

Prediction of Pullout Behavior Characteristics on the Geogrid (지오그리드 보강재의 인발거동특성 예측기법)

  • 김홍택;박사원;김경모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.1-10
    • /
    • 1999
  • In the present study, laboratory pull-out tests with various geogrid shapes are carried out to investigate behavior characteristics of the geogrid. Also, an interface pullout formula is proposed for predicting and interpreting pullout test result. The analytical model is based on the assumption that the reinforcement is linear elastic during the pullout test. And then, maximum pullout force, frictional resistance and active length for each of the grid density ratio are predicted based on the interface pullout formula. The predicted results were compared with those of pullout tests, and showed in general good agreements.

  • PDF

Reinforced Earth Structures (보강토 공법)

  • 이은수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.301-313
    • /
    • 2001
  • Reinforced earth is a composite construction material in which the strength of engineering fill is enhanced by the addition of strong tensile reinforcement in variable types. The basic mechanism of reinforced earth involves the generation of frictional forces and bearing resistances between the soil and the reinforcement. The primitive structure of reinforced earth in Korean peninsula were found as the earth wall built around the old fort In about 3rd century Modern reinforced earth was introduced to Korea early 1980, and spreaded tremendously through the nation. Among them, not a few reinforced earth walls which were built ignored over all stabilities have been collapsed. In this paper basic concepts, economic benefits, design considerations and future applicable trends of reinforced earth are reviewed in simple manners.

  • PDF