• Title/Summary/Keyword: Frictional Pressure Loss

Search Result 31, Processing Time 0.03 seconds

Tapered production tubing design considering flow stability and production rate (유동안정성과 생산량을 고려한 2단 생산튜빙 디자인)

  • Kim, Sung-Il;Jo, Gyung-Nam;Choe, Jonggeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.548-556
    • /
    • 2013
  • A tapered production tubing with two different inner diameters has been suggested to increase production rates. In this research, various tapered tubing combinations are taken into account and possible tubing combinations are proposed to satisfy each objective. In previous studies, production enhancement was the main goal. However, this research also considers flow stability by analyzing tubing pressure traverse, liquid holdup, and operating conditions. For a reservoir assumed in this research, a tapered tubing of, 4.5 inch inner diameter(ID) and 2000 ft in length in the lower part and 5.5 inch ID and 8000 ft in the upper part, shows the highest net present value. Compared to a mono tubing, tapered tubings enable various tubing designs because they have smaller differences in frictional pressure loss. It is important to maintain low liquid holdup to prevent liquid loading. Smaller ID of tapered tubing in the lower part enables to achieve the object. In conclusion, it is identified that various tubing designs are achievable from the analyses of overall production operations depending on purposes specified.

A Study on the pressure loss of sloid-liquid 2 phase flow in an annulus (환형관내 고-액 2상 유동의 압력손실 변화특성에 대한 연구)

  • Woo, Nam-Sub;Han, Sang-Mok;Hwang, Young-Kyu;Yoon, Chi-Ho;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2720-2724
    • /
    • 2007
  • Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. An experimental study was carried out to study solid-liquid two phase flow in a slim hole annulus. Annular velocities of carrier fluids varied from 0.2 m/s to 1.5 m/s. The carrier fluids which were utilized included tap water and CMC water solutions. Pressure drops and average flow rates were measured for the parameters such as inner-pipe rotary speed, carrier fluid velocity, hole inclination and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

A PRESSURE DROP MODEL FOR PWR GRIDS

  • Oh, Dong-Seok;In, Wang-Ki;Bang, Je-Geon;Jung, Youn-Ho;Chun, Tae-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.483-488
    • /
    • 1998
  • A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development.

  • PDF

Investigation of Single Phase Frictional Pressure Loss in Circular Micro Tubes

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1284-1291
    • /
    • 2006
  • Single phase pressure drops in micro tubes were investigated through an experimental measurement and a numerical simulation. Experimental Po was obtained in circular micro tubes with 87 and $118{\mu}m$ diameter with distilled water. Experiments were carried out in laminar flow region with varying the Re 15-450 for the $87{\mu}m$ diameter tubes and 60-1300 for the $118{\mu}m$ diameter tube. No early transition from laminar to turbulent flow was detected for the experimental range. The computational estimation of pressure drop in the $87{\mu}m$ diameter tube was performed with the aid of CFD software. Boundary conditions from experiments were used for the numerical simulation. The results of experimental and numerical studies showed a good agreement with the conventional macro theory.

Influence of Groove Location on Lubrication Characteristics of the Piston and Cylinder in a Linear Compressor (그루브 위치가 리니어 압축기용 피스톤과 실린더의 윤활특성에 미치는 영향)

  • Jeon, W.J.;Son, S.I.;Lee, H.;Kim, J.W.;Kim, K.W.
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper hydrodynamic lubrication analysis is carried out to investigate the effects of groove location on the lubrication performance of a piston and cylinder system in a linear compressor. The rectangle shaped grooves having a constant groove depth and width are applied on the lubrication area of the piston. The Universal Reynolds equation is used to calculate the oil film pressure, and the Elrod algorithm with the finite different method is used to solve the governing equation. The JFO boundary condition is applied to predict cavitation regions. Transient analysis for different locations of the grooves on the piston is carried out using the typical operating condition of the linear compressor in order to estimate the variations of frictional power losses and minimum film thicknesses. When the grooves are applied on the lubrication area, both the frictional power loss and the minimum film thickness decrease. The frictional power loss can be reduced effectively, while maintaining a minimum film thickness to enable the piston operation without direct contact with the cylinder surface, by means of choosing a proper location of the grooves. The optimum location of the grooves to improve a lubrication performance depends on the operation condition or the system requirements specification.

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

Failure Study for Tribological Characteristic Analysis of a Clutch System in Passenger Cars (승용차 클러치 시스템의 트라이볼로지 특성에 관련한 고장사례 연구)

  • Kim Chung-Kyun;Lee Il-Kwon
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a case study on the tribological failure analysis of a clutch system for a manual transmission car. The clutch systems are composed of clutch disk, clutch pressure plate, flywheel rubbing surface, coil and diaphragm springs, release bearing and lever, clutch spline and shaft. The purpose of a clutch system is to transmit and disconnect the driving power of engines by frictional farce from a rubbing surface of a flywheel to a clutch disk and clutch pressure plate with a minimum power loss. In this study, many tribological failure cases based on the wear phenomena and thermal distortions have been presented, which are collected from the car repair shop and maintenance center. The triboiogicai failures are mostly come from the driving conditions, overloading of a car, and especially driving style and personal habit of a car driver.

Manufacturing of the Linear Induction EM Pump for the Liquid Sodium (액체소듐 구동용 선형유동전자펌프 제작)

  • 김희령;남호윤;황중선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.434-437
    • /
    • 1999
  • An EM pump is used for the purpose of transporting the electrically conducting liquid sodium of the high temperature that is used as a coolant in the liquid metal reactor. In the present study, the pilot pump has been designed and manufactured for the high temperature of $600^{\circ}C$ by the equivalent circuit materials and the consideration of the materials and functions. The length and diameter of the pump are given as 84 cm and 10 cm each due to the fixed geometry of the circulation system to be installed. The characteristic of the developing pressure and efficiency is found out by using Laithewaite\`s standard design formula. It is shown that the developing pressure and efficiency are maximized at the frequency of 15 Hz from the curve. The annular channel gap of 3.95 mm is selected in the range of the reasonable hydraulic frictional loss. The components of the pump consist of the material for the high temperature. And then, the pump is manufactured to have the nominal flowrate of 40 1/min and developing Pressure of 1.3 bar.

  • PDF

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Development of Design Technology of Turbine Bearings for Power Plants (발전설비용 터빈베어링의 설계 기술 개발)

  • 하현천;양승헌;변형현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.253-259
    • /
    • 1997
  • A software for design of turbine bearings has been developed based on both the theoretical analysis and experimental investigation. Static and dynamic performance, i.e. load capacity, frictional loss, temperature distribution, stiffness and damping coefficients, stability etc., can be obtained by using this software taking into account the effects of three dimensional variation of lubricant viscosity, turbulence and inlet pressure. A performance test rig was developed by self-design and technology, which was used to verify static and dynamic characteristics and to investigate the proper boundary conditions for theoretical analysis. Consequently HANJUNG has developed the self-design technology for design of turbine bearings for power plants.

  • PDF