• 제목/요약/키워드: Friction-Factor Model

검색결과 250건 처리시간 0.022초

CHARACTERIZATION OF POOL-RIFFLE SEQUENCES IN SOLUTE TRANSPORT MODELING OF STREAMS

  • Seo, Il-Won;Yu, Dae-young
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.171-185
    • /
    • 2000
  • A mathematical model to adequately predict complex mixing characteristics of sorptive polluants in natural streams with pools-and-riffes has been developed. In this model, sorption of pollutants onto the bed sediment as well as mass storage and exchange in the storage zones were incorporated into one-dimensional mass balance equatins. The geometric and hydraulic characteristics of the pool-riffle sequences were properly conceptualized. Simulations with parameters of pool-and-riffle streams better fit the measured data in overall shape and peak concentration than simulations with parameters for uniform channels. The analyses on the characteristics of the storage zone model parameters reveal that a linear relationship between the logrithm of the storage zone volume ratio and a function of the friction factor exists. A linear relatiohship might also be tenatively assumed between the logarithm of the dimensionless mass exchange coefficient and the logarithm of the aspect ratio of the storage zone if some of the high values of the dimensionless mass exchange coefficient collected on the successive bed forms are excluded.

  • PDF

황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향 (On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction)

  • 이종찬;김창식;정경태;전기천
    • Ocean and Polar Research
    • /
    • 제25권spc3호
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장 (Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis)

  • 신창훈;박원규
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.229-238
    • /
    • 2017
  • 본 연구는 다양한 기하학적 특성을 갖는 다공성 매질의 투과도를 유동조건의 변화와 상관없이 적절히 해석할 수 있는 일반화된 투과도 관계식을 도출하고자 시작되었다. 이에 우선, Darcy-Weisbach 관계식 (Darcy's 마찰유동관계식)의 다공질 유동에의 적용방안을 검토하였다. 결과적으로, Kozeny와 Carman 등의 선행연구를 바탕으로, Darcy-Weisbach 관계식은 다공질 유동해석에 적용이 가능하도록 확장되었다. 또한, 이는 모세관 유동모델을 바탕으로 마찰등가투과도(FEP)로 다시 정의되었다. 이때, 도출된 관계식의 유효성은 Kozeny-Carman 방정식과의 비교를 통해 검증되었고, 제시된 FEP 관계식이 Kozeny-Carman 방정식의 일반화된 형태임도 확인하였다. 결론적으로, 본 연구에서는 Darcy-Weisbach 관계식을 다공질 유동해석에 적용할 수 있도록 적절히 확장하고, 새로운 투과도 산정을 위한 FEP 관계식을 제시하였다.

Shape Optimization of A Surface Roughened by Staggered Ribs To Enhance Turbulent Heat Transfer

  • Kim Hong-Min;Kim Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.237-239
    • /
    • 2003
  • The present study investigates on design optimization of rib-roughened two-dimensional channel to enhance turbulent heat transfer. Response surface method with Reynolds-averaged Navier-Stokes analysis is used as an optimization technique. Standard $k-{\varepsilon}$model with wall functions is adopted as a turbulence closure. The objective function is defined as a linear combination of heat transfer and friction drag coefficients with weighting factor. Computational results for overall heat transfer rate show good agreements with experimental data. Four design variables are optimized for weighting factor of 0.02.

  • PDF

열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계 (DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER)

  • 신동윤;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계 (Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer)

  • 김홍민;김광용
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

엇갈린 리브가 부착된 열전달면의 수치최적설계 (Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs)

  • 김홍민;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF

지반조사결과에서 설계변수의 결정문제 -지반특성치 산정을 중심으로- (Determination of Design Parameters from Ground Investigation Results -Focus on geotechnical characteristic values-)

  • 윤길림;윤여원;김홍연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.126-133
    • /
    • 2008
  • Geotechnical limit state design methods; LRFD of North America is an approach that estimates resistance using design model and then multiplies resistance factor by calculated resistance to reflect the uncertainty of geomaterials and design models; whereas, Eurocode of the Europe employs the partial resistance factor applied directly to each variable in the resistance equation that individual soil properties such as cohesion and angle of internal friction are applied. This discussion paper is a study on characteristic value which has globally been argued through processing of development of Eurocode 7 for geotechnical design even to the present. Estimating the characteristic value of soil properties affects not only determination of design value applied directly to design of geotechnical structures, but also economic feasibility and stability of the structures.

  • PDF

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 Asia Navigation Conference
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF