DOI QR코드

DOI QR Code

Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis

다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장

  • Received : 2016.09.19
  • Accepted : 2017.01.18
  • Published : 2017.04.01

Abstract

This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

본 연구는 다양한 기하학적 특성을 갖는 다공성 매질의 투과도를 유동조건의 변화와 상관없이 적절히 해석할 수 있는 일반화된 투과도 관계식을 도출하고자 시작되었다. 이에 우선, Darcy-Weisbach 관계식 (Darcy's 마찰유동관계식)의 다공질 유동에의 적용방안을 검토하였다. 결과적으로, Kozeny와 Carman 등의 선행연구를 바탕으로, Darcy-Weisbach 관계식은 다공질 유동해석에 적용이 가능하도록 확장되었다. 또한, 이는 모세관 유동모델을 바탕으로 마찰등가투과도(FEP)로 다시 정의되었다. 이때, 도출된 관계식의 유효성은 Kozeny-Carman 방정식과의 비교를 통해 검증되었고, 제시된 FEP 관계식이 Kozeny-Carman 방정식의 일반화된 형태임도 확인하였다. 결론적으로, 본 연구에서는 Darcy-Weisbach 관계식을 다공질 유동해석에 적용할 수 있도록 적절히 확장하고, 새로운 투과도 산정을 위한 FEP 관계식을 제시하였다.

Keywords

References

  1. Shin, C. H., Lee, S. M., Kwon, S. I., Park, D. J. and Lee, Y. S., 2012, "A Classification and a Survey on the Core Technology for Shale Gas Development," Trans. of KSGE, Vol. 49, No. 3, pp. 395-410.
  2. Kozeny, J., 1927, "Ueber Kapillare Leitung des Wassers im Boden," Sitzungsberichte der Akademie der Wissenschaften in Wien. 136, pp. 271-306.
  3. Carman, P. C., 1937, "Fluid Flow Through Granular Beds," Inst. Chem. Eng. 15, pp. 150-166.
  4. Carman, P. C., 1938, "The Determination of the Specific Surface of Powders," Trans. of J. Soc. Chem. Ind. 57(225), pp. 225-234.
  5. Carman, P. C., 1956, Flow of gases through porous media, Butterworths Scientific Publications.
  6. Paterson, M. S., 1983, "The Equivalent Channel Model for Permeability and Resistivity in Fluidsaturated Rock - A Re-appraisal," Mechanics of Materials 2, pp. 345-352. https://doi.org/10.1016/0167-6636(83)90025-X
  7. Walsh, J. B. and Brace, W. F., 1984, "The Effect of Pressure on Porosity and the Transport Properties of Rock," J. of Geophysical Research 89(B11), pp. 9425-9431. https://doi.org/10.1029/JB089iB11p09425
  8. Achidou, Y. and Avelaneda, M., 1992, "Influence of Pore Roughness and Pore-size Dispersion in Estimating the Permeability of a Porous Medium from Electrical Measurements," Physics of Fluids A: Fluid Dynamics 4, pp. 2651-2673. https://doi.org/10.1063/1.858523
  9. Bear, J., 1975, Dynamics of fluids in porous media, American Elservier Pub. Inc., pp. 27-194.
  10. Burmesiter, L. C., 1993, Convective heat transfer, 2nd ed., John Wiley & Sons, pp. 44-51.
  11. Karviany, M., 1952, Principles of heat transfer in porous media 2nd Ed., Springer.
  12. Rubinsein, J. and Torquato, S., 1989, "Flow in Random Porous Media: Mathematical Formulation, Variational Principles, and Rigorous Bounds," J. Fluid Mech. 206, pp. 25-46. https://doi.org/10.1017/S0022112089002211
  13. Whitaker, S., 1996, "The Forchheimer Equation: A Theoretical Development," Transport in Porous Media 25, pp. 27-61. https://doi.org/10.1007/BF00141261
  14. Mei, C. C. and Auriault, J. L., 1991, "The Effect of Weak Inertia on Flow Through a Porous Medium," J. Fluid Mech. 222, pp. 647-663. https://doi.org/10.1017/S0022112091001258
  15. Chalky, J. W., Cornfield, J. and Park, H., 1949, "A Method of Estimating Volume-surface Ratio," Science 110, p. 295. https://doi.org/10.1126/science.110.2856.295
  16. Engler, T. W., 2010, Fluid flow in porous media, Petroleum Engineering 524, New Mexico Tech., pp. 2.1-2.36.
  17. Carrier, W. D. III., 2003, "Goodbye, Hazen; Hellow, Kozeny-Carman," J. of Geotechnical and Geoenvironmental Eng., ASCE, pp. 1054-1056.
  18. White, F. M., 2004, Fluid dynamics, 4th ed., McGraw-Hill, New York, pp. 325-404.
  19. Min, K. S., Lee, D. Y. and Ro, S. T., 2001, "Theoretical Analysis on Porous Heat Sinks using Dracy Flow and Two-equation Model," Proc. Korean Soc. Mech. Eng. Conf, pp. 95-100.