• Title/Summary/Keyword: Friction pile

Search Result 282, Processing Time 0.03 seconds

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

Axial Load Transfer Behavior of a Large Diameter Pile socketed into weathered rock (풍화암 소켓 대구경말뚝의 축하중 전이거동)

  • 정창규;임태경;황근배;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.390-397
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement for a pile socketed into weathered rocks were performed. Axial load transfers during static pile load test were measured and analyzed. Three large diameter piles socketed into weathered rock were behavior behaved as friction pile.

  • PDF

Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit (모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Model tests in calibration chamber with open -ended steel pipe pile have been performed in sand deposit to clarify effect of soil plug on bearing capacity, load transfer mechanisms in soil plug, and behavior of soil plug under dynamic and static conditions. Model piles were devised so that bearing capacity of open -ended pile could be measured separately into outside skin friction, inside skin friction due to soil plug -pile interaction and end bearing force on the section of steel pipe pile. It may be concluded, form the test results, that the plugging level of open -ended pile is more correctily defined by specific recovery ratio, y, rather than by plug length ratio, PLR, and the major part of inside skin friction is generated within the range of three times as long as the inner diameter of the pile from the pile tip. The ratio of inside skin friction to total bearing capacity is much larger than that of outside skin friction to total bearing capacity. Therefore, the bearing capacity of pile could not be well predicted, unless the inside skin friction is properly taken into account.

  • PDF

A Study of Micro-piles Method combined with the Resisting Fixture interacting the power of frictional resistance in a contrary direction (양방향 저항체를 결합한 마이크로파일공법 연구)

  • Baik, Dong-Ho;Lee, Sang-Moo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.74-75
    • /
    • 2014
  • In remodeling business or construction of both new strucures and existing structures, Case that pile foundation was set is often. Micro pile, holding compressive force and tensile force by spherical friction, is supported by skin friction rather than end bearing capacity. but, This is weak in tension. Active area of micro pile's skin friction is narrow and micro pile don't do unification behavior hence. So bearing capacity was not fully mobilized in existing researching. In this study, in order to compensate for this method, micro pile to install Resisting Fixture is proposed.

  • PDF

Numerical Evaluation of Skin Friction of Barrette Piles by Aspect Ratio and Soil Strength Changes (바렛말뚝의 형상비와 지반 강성에 따른 주면마찰력의 수치해석적 평가)

  • Chae-Min, Kim;Byeong-Han, Jeon;Jun-Seo, Jeon;Tae-Hyung, Kim;Jeong-Pyo, Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2022
  • In this study, the effect of aspect ratio and soil strength on the skin friction for barrette pile was evaluated using numerical analysis. The back analysis was conducted to obtain the friction coefficient between pile and soil using the experimental results of the static pile load test for the barrette pile installed at OOsite in Busan. A total of 36 simulations for the static pile load test were also conducted with respect to various aspect ratios and soil strengths. It was found that the skin friction increases as the aspect ratio increases and the change in increasing rate was remarkable near the ultimate skin friction. In addition, the effect of aspect ratio on the skin friction was investigated when the strength of soil at pile tip was varied.

A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement (압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발)

  • Kim, Hyeong-Joo;Mission, Jose Leo C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.5-17
    • /
    • 2009
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.

Characteristics of Distribution Ratio for Skin Friction in Group Piles (무리말뚝의 주면마찰력 분담비율 특성)

  • Lee, Jun-Dae;Ahn, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.47-54
    • /
    • 2006
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. This experimental study was devoted to investigate skin friction of H group piles in granite soil under laboratory test. Pile arrangements $(1{\times}2,\;1{\times}3,\;2{\times}2,\;2{\times}3,\;3{\times}3)$, pile space (2D,4D,6D), and soil density $(D_r=40%,\;80%)$ were tested. The main results obtained from the model tests can be summarized as follows. Distribution ratio of skin friction for total load decreased by $48{\sim}39%$ (dense soil), $32{sim}27%$ (loose soil) as piles space ratio increases in case of $3{\times}3$ group piles. And the distribution ratio of skin friction by pile settlements under loose soil decreased by about $58{\sim}33.2%$ in $2{\times}2$ group piles and about $65{\sim}38%$ in $3{\times}3$ group piles respectively.

Characteristics of Skin Friction on Compression Loaded Group Piles (압축하중을 받는 무리말뚝의 주면지지력 특성)

  • Ahn Byung-Chul;Lee Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.95-100
    • /
    • 2004
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. And lately It is well grown that the high strength H-pile has been widely used f3r pile foundations. To compare the skin frictions of H piles under different density soil conditions, this paper presents results of a series of model tests on vertically loaded group piles. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements $(2\times2,\;3\tunes3)$, pile space(2D, 4D, 6D), and soil density$(D_r=40\%,\;80\%)$ were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that compression load for group piles increases as number of piles increase and piles space ratic decrease to $D_r=40\%$ of soil density. The analysis also found that the theoretical value of skin friction for group piles is greater than practical value as piles space ratio increases to $D_r=40\%$ of soil density. Piles showed the greatest difference of the skin friction in case that the pile space ratio(S/D) is 6. The theoretical value by Meyerhof and DM-7 showed 1.83 times and 1.32 times respectively as great as practical value in case of S/D=6 and $2\times2$.

A Study of Governing Factors on the Engineering Behaviour of a Single Pile in Consolidating Ground (압밀이 진행중인 지반에 설치된 말뚝의 공학적 거동을 지배하는 주요인자들에 대한 연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.5-16
    • /
    • 2017
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of a single pile in consolidating ground from coupled consolidation analyses. A single pile with typical minimum and maximum ranges of fill height and clay stiffness has been modelled. The computed results demonstrate that the higher the height of the fill above the clay surface and the smaller the stiffness of the clay, the higher the dragloads and the negative skin friction-induced pile settlements. It has been found that the development of dragloads and pile settlement is more governed by the stiffness of the clay rather than the height of the fill. Positive shaft resistance is mobilised only after the average degree of consolidation is larger than 50%. Although the pile is installed when the degree of consolidation is 50% or more, relatively large negative skin friction can nevertheless develop on the pile. On the other hand, when a load is applied on the pile experiencing an increase in the negative skin friction with time during consolidation, the pile undergoes a large increase in the final settlement of up to 95% compared to that of a pile without axial load on the pile head. The allowable pile capacity when there is negative skin friction on the pile is reduced by about 4-11% compared to a pile without negative skin friction.

Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 -)

  • Choi, Yongkyu;Lee, Wonje;Lee, Chang Uk;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.17-30
    • /
    • 2019
  • Based on pile load test results for various pile types that were constructed in-situ and pile design data of prebored PHC piles, the ratio of skin friction to total capacity (SRF) was analyzed. A SRF distribution range from the pile load test results for pilot test prebored PHC piles was 42~99% regardless of relative penetration lengths, soil types, and pile load test types. However, a SRF distribution range from the pile design data for prebored PHC piles was 20~53% regardless of relative penetration lengths and pile diameters. Also, a SRF distribution range from the restrike dynamic pile load test results for pretest working prebored PHC piles was a scattered range of 4~83% regardless of pile diameters, relative penetration lengths and soil types. The scattered SRF of pretest working piles was caused to the quality control issue on the filling of cement milk around piles and this quality control issue should be improved. The average SRF calculated by the current design method was estimated to be 2.2 times lower than the average SRF of the pilot test piles. It is because skin friction resistance is calculated at a very low level. Therefore, a new design method for skin friction will be proposed based on this study.