• Title/Summary/Keyword: Friction pad

Search Result 235, Processing Time 0.029 seconds

A Study on the Characteristics of Stick-slip Friction in CMP (CMP에서의 스틱-슬립 마찰특성에 관한 연구)

  • Lee, Hyunseop;Park, Boumyoung;Seo, Heondeok;Park, Kihyun;Jeong, Haedo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.

Thermomechanical Properties of Carbon Fibres and Graphite Powder Reinforced Asbestos Free Brake Pad Composite Material

  • Thiyagarajan, P.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.117-120
    • /
    • 2003
  • Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.

  • PDF

Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation (회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF

Physics of the Coefficient of Friction in CMP

  • Borucki, Len;Philipossian, Ara;Zhuang, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.79-83
    • /
    • 2007
  • The implications of a theory of lubricated pad asperity wafer contact are traced through several fundamental areas of chemical-mechanical polishing. The hypothesized existence of a nanolubrication layer underlies a high accuracy model of polish rates. It also provides a quantitative explanation of a power law relationship between the coefficient of friction and a measure of pad surface flattening. The theory may further be useful for interpreting friction changes during polishing, and may explain why the coefficient of friction is sometimes observed to have a temperature or velocity dependence.

The properties of pad conditioning according to manufacturing methods of CMP pad conditioner (CMP 패드 컨디셔너의 제조공법에 따른 패드 컨디셔닝 특성)

  • Kang S.K.;Song M.S.;Jee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.362-365
    • /
    • 2005
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond retention. Strong cohesion between diamond grits and metal matrix prevents macro scratch on the wafer. If diamond retention is weak, the diamond will be pulled out of metal matrix. The pulled diamond grits are causative of macro scratch on wafer during CMP process. Firstly, some results will be reported of cohesion between diamond grits and metal matrix on the diamond tools prepared by three different manufacturing methods. A measuring instrument with sharp cemented carbide connected with a push-pull gauge was manufactured to measure the cohesion between diamond grits and metal matrix. The retention force of brazed diamond tool was stronger than the others. The retention force was also increased in proportion to the contact area of diamond grits and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of chrome in metal matrix and carbon which enhance the interfacial cohesion strength between diamond grits and metal matrix. Secondly, we measured real-time data of the coefficient of friction and the pad wear rate by using CMP tester (CETR, CP-4). CMP pad conditioner samples were manufactured by brazed, electro-plated and sintered methods. The coefficient of friction and the pad wear rate were shown differently according to the arranged diamond patterns. Consequently, the coefficient of friction is increased according as the space between diamonds is increased or the concentration of diamonds is decreased. The pad wear rate is increased according as the degree of diamond protrusion is increased.

  • PDF

The Design Approach of PAD System by using a Solid Propellant (고체추진제를 이용한 PAD 시스템 설계기법)

  • Oh Seok-Jin;Lee Do-Hyung;Kim Yoon-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.7-10
    • /
    • 2006
  • A quasi-equilibrium model is used in order to aid movement and ballistic analysis for a propellant actuated device(PAD) system. The validity of the model is examined by experiments of a PAD system. The appropriateness of its usage for application was explored by comparing the tendency of experiments and analysis results, and the coefficients of friction and heat loss were obtained. The design method developed will be applied to the design of PAD systems.

  • PDF

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).

Effect of Friction Curve on Brake Squeal Propensity (마찰 곡선에 의한 브레이크 소음 영향도 분석)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • The brake squeal propensity associated with friction curve is investigated by using the hybrid finite element(FE)-analytical model. The modal analysis of an actual disc and pad is conducted by FE method. Also, the modeling for the accurate contact and disc rotation is analytically achieved. The eigenvalue analysis for the hybrid model provided the squeal dependency on the friction curve. Particularly, some pad modes and the disc torsion mode are shown to be sensitive for the friction curve.