• Title/Summary/Keyword: Friction Pendulum System

Search Result 79, Processing Time 0.036 seconds

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Estimation and Compensation of the Coulomb Friction in an Inverted Pendulum (쿨롱 마찰력 추정과 보상을 통한 역진자 시스템의 제어 성능 개선)

  • Park, Duck-Gee;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.483-490
    • /
    • 2006
  • When the nonlinearities, such as friction and backlash, are not considered in the controller design, undesirable oscillations can occur in the steady-state response of a control system. This paper deals with a method to reduce oscillations that often appear in the steady-state response of a pendulum system, which is controlled by a state feedback controller based on the linearized system model. With an assumption that the oscillations shown in the steady-state are caused by the Coulomb friction, we improve the performance of stabilization and tracking by estimating and compensating for the Coulomb friction in the pendulum system. Experimental results show that the control performance can be improved sufficiently by the proposed method, when it is applied to an inverted cart pendulum which is a multi-variable unstable system. Furthermore, we could see that the Coulomb friction model used in the estimation of the friction is valid in applying the suggested method.

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material (PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석)

  • Kim, Sung-Jo;Kim, Ji-Su;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.213-219
    • /
    • 2021
  • Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer (변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구)

  • Jang, Jung-Bum;Kim, Jeong-Ki;Hwang, Kyeong-Min;Ham, Kyung-Won;Park, Jin-Wan;Lee, Chan-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Friction pendulum system is developed to prevent the damage of transformer, which is the most important among the electric power facilities, due to the earthquake and its seismic capacity is verified through the shaking table test. The applicability of friction pendulum system is confirmed as test results of compressive capacity test and friction test. Especially, as a result of shaking table test with a large scale transformer model, friction pendulum system gives to the reduction of maximum response acceleration by 30% at anchorage of transformer and 59% at the top of porcelain bushing comparing with the existing anchorage type. In addition to the reduction of maximum response acceleration, natural frequency of transformer is shifted to long period due to the friction pendulum system. In case that friction pendulum system is applied to the transformer, the damage of transformer can be prevented effectively under the earthquake.

An Observer Design and Compensation of the Friction in an Inverted Pendulum using Adaptive Fuzzy Basis Functions Expansion (적응 법칙 기반의 퍼지 기초 함수를 이용한 도립진자의 마찰력 관측기 설계 및 마찰력 보상)

  • Park, Duck-Gee;Park, Min-Ho;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • This paper deals with the method to estimate the friction in a system. We study a nonlinear friction model to estimate the friction in an inverted pendulum and approximate the friction model using fuzzy basis functions expansion. To demonstrate the friction observer using FBFs, we derive a update rule based on the error term that is formed by the output from a real system and observer output with a friction estimate. And two compensation algorithms to improve the response of an inverted pendulum are proposed. The first method that a observer parameter is updated in on-line and the friction is compensated at the same time. The second method is to compensate the friction with observer parameter estimated priori. The two methods is compared through the experimental results.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF