• Title/Summary/Keyword: Friction Drag Reduction

Search Result 76, Processing Time 0.021 seconds

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate (평판 위 흐름 Defect Law 영역의 난류 특성 연구)

  • Suh, Sung-Bu;Park, Il-Ryong;Jung, Kwang-Hyo;Lim, Jung-Gwan;Kim, Kwang-Soo;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.

Experimental Study on the Drag Reduction & Heat Transfer Ratio in the Circular Pipe with Swirl Generater (난류발생기를 가지는 원형 파이프내에서의 마찰저감 및 열전달율에 관한 실험적 연구)

  • Kim, Seong-Su;Cho, Sung-Hwan;Yoon, Seok-Mann
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.430-435
    • /
    • 2008
  • Total lengths of domestic pipe network for district heating system are above about 2,500Km. A lots of pumping power for heat transportation through long pipe are required by the flow friction of pipe surface. Until now there have been considered about various methods to reduce the flow friction for district heating system such as using surfactants and turbulence promoters by swirl flow and baffles etc. At this study, swirl flow generator was tested about the possibility to increase the heat transfer ratio at the heat exchanger in the case which the suppling water temperature increased from $50^{\circ}C$ until $120^{\circ}C$. Experimental results showed that the heat transfer ratio increased and also pressure increase ratio increased simultaneously in the case which swirl flow generator installed. The amount of the increasing ratio for heat transfer and pressure were reached until 4.33% and 11% at the case of $120^{\circ}C$ suppling temperature which domestic district heating system were using.

  • PDF

Control of Turbulent Curved Channel Flow for Drag Reduction (항력저감을 위한 굽은 난류채널 유동제어)

  • Choe, Jeong-Il;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1302-1310
    • /
    • 2002
  • A direct numerical simulation in turbulent curved channel flow is performed. The drifting Taylor-Gortler vortices are identified by applying a conditional averaging. A new algorithm is proposed based on the wavelet transform of the wall information. A continuous wavelet transform with Marr wavelets is employed to decompose the flow signals at a chosen length scale. An active cancellation is applied to attenuate the Taylor-Gortler vortices and to reduce the wall skin friction.

Analysis of Automobile Fluid Flow Field Using FDM Method (유한차분법을 이용한 자동차 유동장 해석)

  • Kim, Myun-Hee;Lee, Tae-Young;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • When Automobile runs high velocity, it causes sleepy velocity profile then that generates lift force and drag force. Lift force reduce tire friction force. Drag force increase consumed power. For improve automobile performance, reduction of Lift force and Drag force was seriously considered. It measured experimently using wind tunnel, numerically using numerical analysis. Finite difference method is using difference equation and simplifed mesh. This method require less calculation time and computer power than other method.

  • PDF

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

Influence of a Large-Eddy Breakup Device on Drag of an Underwater Vehicle (Large-Eddy Breakup Device가 수중운동체의 저항에 미치는 영향)

  • Kim, Joon-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.773-783
    • /
    • 2019
  • A numerical analysis of a turbulent flow with a 'large-eddy breakup device(LEBU)' was performed to investigate the influence of the device on the drag of underwater vehicle using commercial CFD code, FLUENT. In the present study, the vehicle drag was decomposed to skin-friction coefficient(Cf) and pressure coefficient(Cp). The variation of the vehicle Cf and Cp were observed with changing location of the device and Reynolds number. As a result, the device decreased the vehicle Cf because it suppressed the turbulent characteristics behind the device. The larger Reynolds number, the higher reduction effect when the device was placed in front part of, and near the vehicle. On the other hand, the device increased/decreased the vehicle Cp with increasing/decreasing turbulent kinetic energy at recirculating flow region behind the vehicle. The total drag change by the device was caused by Cp rather than Cf.

Estimation of Drag Factors Between Roadway Surface and Human Body (인체와 노면간의 마찰계수 추정에 관한 연구)

  • Kim, Min-Tae;Lee, Sang-Soo;Lee, Chul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.54-62
    • /
    • 2010
  • The scientific analysis of car-pedestrian accidents is not an easy task because of the characteristic of the accidents itself. Since the analysis involved human being, there were few experimental data that could be used for the analysis. The coefficient of friction of human body was the one of crucial data for accident analysis, but no field experiment report was available for various roadway conditions. This study intends to measure the coefficient of friction of human body through field studies. Results showed that the coefficient of friction of human body for dry asphalt pavement conditions was 0.59~0.62, and for dry concrete pavement conditions was 0.59~0.61. In addition, the coefficients for wet asphalt pavement and for wet concrete pavement conditions were 0.56~0.59 and 0.51~0.54 respectively, indicating 5.0% and 8.3% reduction compared to the dry conditions. The deduced coefficients were validated using the simulation program. It has been confirmed that the experiment values were close to the simulation results.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.