• Title/Summary/Keyword: Freundlich

Search Result 633, Processing Time 0.027 seconds

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

Effects of Change in Soil pH and Treatment of Gibbsite and Organic Matter on Sulfate Adsorption in Soils (Gibbsite와 유기물(有機物) 처리(處理) 및 pH변화(變化)가 토양(土壤)의 SO4= 흡착(吸着)에 미치는 영향(影響))

  • Yoon, Sun-Kang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 1986
  • Laboratory experiments were carried out to investigate the effects of pH, gibbsite, and organic matter on sulfate adsorption by soils. Samples of five soil series (Songjeong, Gopyung, Yeasan, Gyorae, and Namwon), different in physical and chemical properties, were used in this study. The results obtained from sulfate adsorption experiment with sulfate solutions of the concentrations ranging from 50 to 400 ppm were as follows: 1. The adsorption phenomena for five soils were well described by the Freundlich adsorption isotherm over a given range of sulfate concentration. 2. The amounts of sulfate adsorbed and K value of Freundlich adsorption isotherm increased as the initial pH of the suspension decreased. 3. Although the changes in pH of the suspension on the adsorption equilibrium were hardly observed in the soil treated with gibbsite, the sulfate adsorption rates were increased with amount of gibbsite treated. 4. The effects of pH of the suspension on the adsorption rates in the soils treated with gibbsite were remarkable at the level of 0.1% but were little at the level of 1.5%. 5. The adsorption rates of soils, treated with organic matter and incubated for three weeks, were in the order: starch > straw > compost. At the relatively high levels (5 and 10%) of treatments, compost treatment resulted in the sulfate desorption phenomena.

  • PDF

Effects of soil organic matter and oxidoreductase on adsorption and desorption of herbicide oxadiazon in soils (제초제 oxadiazon의 토양 흡탈착에 미치는 유기물의 함량과 산화환원효소의 영향)

  • Lee, Wan-Seok;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.70-78
    • /
    • 1998
  • Dissipation, adsorption and desorption of oxadiazon were examined in two soils containing different amounts of soil organic matter. In addition, reactivity of oxadiazon with humic monomers was searched to clarify binding mechanism of oxadiazon to soil organic matter in the presence of a laccase of Myceliophthera thermophila. Half lives of oxadiazon were 38 days in Soil I and 45 days in Soil II. Freundlich constant, k values of fresh soils were higher than those of oxidized soils. Adsorption rates of oxadiazon were increased 17.1% in Soil I and 9.3% in Soil II in the presence of a laccase but no significant increase was observed in oxidized soils. Desorption rates of oxadiazon in fresh soils were lower than those in oxidized soils. Desorption rates of adsorbed oxadiazon in soils addes with the enzyme were not changed in oxidized soils but decreased in fresh soils. The herbicide oxadiazon alone underwent no transformation by a laccase but in the presence of catechol, guaiacol and gallic acid as humic monomer, transformation rates of it were from 20% to 24%.

  • PDF

Separation and Adsorption-Desorption Characteristics of Heavy Rare Earth Elements (Gd, Tb, Dy) using P507 Resin (P507 추출수지를 이용한 중희토류 원소(Gd, Tb, Dy)의 흡탈착 분리특성에 관한 연구)

  • Lee, Sungeun;Kim, Joung Woon;Jeon, Jong Hyuk;Jun, Hong Myeong;Lee, Jin Young;Han, Choon
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.60-67
    • /
    • 2016
  • This study was conducted to establish the adsorption-desorption mechanism and the optimum condition of chromatographic operation for separations of heavy rare earth elements (Gd, Tb, Dy) using a p507-containing resin. By employing Langmuir and Freundlich isotherm together with pseudo first and second order kinetics, absorption-desorption reaction mechanism was investigated. Langmuir and Freundlich isotherm was applied under assumption that adsorption reaction occurs in form of monolayer, and because the result was identical to the assumption, now we know adsorption of heavy rare earth elements occurs in form of monolayer. Concerning the pseudo first and second order kinetic, the pseudo second order seemed to be more suitable to represent heavy rare earth element adsorption mechanism. By using the extraction chromatography to separate heavy rare earth elements, ${\alpha}^{Tb}_{Gd}=1.24$, and ${\alpha}^{Dy}_{Tb}=1.03$ were confirmed in eluent HCl 0.25 M which indicates almost perfect separations of three elements. Furthermore, as concentrations of eluent became higher, the resolution value decreased and the elution area got shortened.

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida (해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성)

  • Choi, Ik-Won;Kim, Sung-Un;Seo, Dong-Cheol;Kang, Byung-Hwa;Sohn, Bo-Kyoon;Rim, Yo-Sup;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.370-378
    • /
    • 2005
  • The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Studies on Adsorption Behaviour for Heavy Metal Ions from Waste Water Using Eco-philic Cellulose Derivatives (환경친화형 셀룰로오스계 유도체의 합성 및 폐수내 중금속 이온 흡착거동 연구)

  • Lee, Soon-Hong;Bae, Joong-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1146-1152
    • /
    • 2005
  • Graft copolymers were synthesized from methylcellulose(MC) and acrylic acid(AA) with active carboxyl groups in the presence of potassium persulfate($K_2S_2O_8$) initiator to enhance adsorption capacity of toxic heavy metal such as $Pb^{2+}$ and $Cu^{2+}$ from wastewater. The resulting grafted copolymers(MC-g-AA/PAA) were mixture of the graft copolymers from MC and AA(MC-g-AA) and polyacrylic acid homopolymers(PAA). The degree of palling was increased with rising concentration of monomer and initiator under the reaction conditions at $60^{\circ}C$, 3 hrs. The water insoluble property of MC-g-AA showed more than 19.7% degree of grafting. So that it could be an adsorbent of heavy metals. Adsorption characteristics of the MC-g-AA were evaluated depending on the degree of grading, pH of wastewater, adsorption time, dosage of MC-g-AA and concentration of heavy metals in the different conditions. Degree of grafting, and initial concentration of heavy metal ions increased, the adsorption amount of $Pb^{2+}$ and $Cu^{2+}$ increased, but added MC-g-AA increased, the adsorption amount per unit weight of $Pb^{2+}$ and $Cu^{2+}$ decreased. The MC-g-AA showed the high $Pb^{2+}$ and $Cu^{2+}$ adsorption amount in the range pH $4{\sim}6$. Also all of $Pb^{2+}$ and $Cu^{2+}$ ions reached in adsorption equilibrium in neighborhood 4 hours. The adsorption of heavy metals described by Freundlich isotherm, it was determined the value of l/n of $Pb^{2+}$ and $Cu^{2+}$ that 0.4294 and 0.3453, respectively.

Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials (반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착)

  • Min, Jee-Eun;Park, In-Sun;Ko, Seok-Oh;Shin, Won-Sik;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.907-912
    • /
    • 2008
  • In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

Adsorption Thermodynamics of Polyamidoamide Epichlorohydrin Polymer in an Aqueous Fibrous Suspension (섬유 현탁액내 PAE 고분자 흡착의 열역학적 고찰)

  • Sung-Hoon Yoon;Kwang-Suk Joo;Tae-Won Lee;Kun-Han Kim;Byung-Bin Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.220-228
    • /
    • 2003
  • This study was to examine the thermodynamic features of polyelecrolytic adsorption of polyamidoamine-epichlorohydrin(PAE) in a papermaking wet-end. The PAE adsorption experiments were conducted in a stirred jar containing an aqueous fibrous suspension and evaluated in terms of Langmuir and Freundlich parameters. The electrokinetic property of a stock was examined by measuring the zeta potential of each colloidal suspension. The polyelectrolytic PCD titration was employed to determine the adsorbed amounts of PAE polymer. The zeta potential of a stock, being varied significantly depending upon the addition of PAE polymer, showed initially a sharp increase and later an exponential decay as a function of time . The PAE adsorption exhibited a pseudo-Langmuir adsorption behavior at$20^{\circ}C$ , whereas its Freundlich power(v) increased in a proportional way at an elevated temperature. The train numbers calculated on the basis of adsorption thermodynamics were 7 to 8. The length of the extended loop of PAE was calculated as 215 nm at $20^{\circ}C$ and increased at a rate of 9% at every $10^{\circ}C$ rise in temperature. The PAE adsorption was proven to be an exothermic physisorption with the estimated adsorption enthalpy of -27 to -29 kJ/mol.

Adsorption Pattern of the Herbicide, Bentazon and Its Metabolites on Soil (제초제 Bentazon과 그 대사산물들의 토양 중 흡착양상)

  • Kim, Jong-Soo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.274-280
    • /
    • 2009
  • In order to elucidate the adsorption mechanism of the herbicide, bentazon and its metabolites on soil, their adsorption patterns on soil and six adsorbents were investigated with Freundlich, Langmuir and linear isotherm. Freundlich constants ($K_f$) and maximum adsorption amount($Q^0$) of bentazon on soil was 0.55 and 3.97. Kd and Koc values of it were 0.18 and 18. The all of metabolites used except deisopropylbentazon amounts sorbed on the soil were much higher than bentazon. The most of 8-hydroxybentazon was adsorbed on soil showing $K_f$ = 316.6, $Q^0$ = 3,488, Kd = 29.7 and Koc = 2,970. Bentazon, deisopropylbentazon and 8-hydroxybentazon were shown high affinity to anion exchange regardless of pH and $NH_2$ in low pH range. Reversed phase $C_{18}$ resulted in 100% retention of N-methylbentazon regardless of pH and other metabolites were retained below 40%. The AIBA was strongly adsorbed in silica gel, COOH and cation exchange phase but poor retention was on anion exchange sorbent. 2-Aminobenzoic acid showed an amphipathic nature which had high affinity for COOH and cation exchange phase at pH 7.0 as well as $NH_2$ and anion exchange sorbent at pH 3.0.