DOI QR코드

DOI QR Code

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment

해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용

  • Kang, Ku (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Hong, Seong-Gu (Department of Bioresources & Rural systems Engineering, Hankyong National University) ;
  • Kim, Han-Joong (Department of Bioresources & Rural systems Engineering, Hankyong National University) ;
  • Park, Seong-Jik (Department of Bioresources & Rural systems Engineering, Hankyong National University)
  • 강구 (한경대학교 미래융합기술대학원) ;
  • 김영기 (한경대학교 화학공학과) ;
  • 홍성구 (한경대학교 지역자원시스템공학과) ;
  • 김한중 (한경대학교 지역자원시스템공학과) ;
  • 박성직 (한경대학교 지역자원시스템공학과)
  • Received : 2014.02.20
  • Accepted : 2014.08.29
  • Published : 2014.08.31

Abstract

To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

해양오염퇴적물 정화를 위한 몬모릴로나이트의 피복소재 적용성 평가를 위하여 $PO{_4}{^{3-}}$ 흡착특성을 알아보고자 동적흡착, 평형흡착, pH, 흡착제 주입량, 이온경쟁, 타 흡착제 복합사용 그리고 해수에서의 흡착특성을 살펴보았다. 동적흡착실험 결과 50 mg/L의 농도에서는 1시간대에 흡착평형을 나타내었고, 300 mg/L의 농도에서는 3시간대 흡착평형을 나타내었다. Freundlich 모델과 Langmuir 모델을 적용한 결과 다층흡착을 가정한 Freundlich 모델이 $PO{_4}{^{3-}}$의 평형 흡착에 더 잘 부합하였고, $PO{_4}{^{3-}}$의 흡착은 pH가 낮을 때 높은 흡착경향을 나타내었다. 이는 높은 pH에서는 OH-가 경쟁관계를 형성함으로 판단된다. 이온 경쟁관계 실험 결과 질산, 황산, 중탄산 모두 몬모릴로나이트의 $PO{_4}{^{3-}}$ 흡착에 영향이 미비한 것으로 나타났다. 몬모릴로나이트는 적니와 제강슬래그를 혼합하여 사용하는 것보다 단일 사용하였을 때 $PO{_4}{^{3-}}$ 제거에 더 효과적이었다. 해수에서의 $PO{_4}{^{3-}}$ 흡착특성을 살펴본 결과 담수에서의 흡착량 보다 높은 결과를 나타내었고 이는 해수 내 존재하는 칼슘이온 등의 결과로 판단된다. $PO{_4}{^{3-}}$ 용출 수조실험결과 몬모릴로나이트 피복 수조는 실험 14일까지 $PO{_4}{^{3-}}$이 측정되지 않았다. 몬모릴로나이트는 수용액중 $PO{_4}{^{3-}}$ 흡착 제거에 효과적인 피복소재로 판단된다.

Keywords

References

  1. Clark, R. B., "Marine Pollution, 5th Edition," Oxford University Press, UK (2001).
  2. Billen, G., Garnier, J., Deligne, C. and Billen, C., "Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication," Sci. Total Environ., 243-244, 43-52(1999). https://doi.org/10.1016/S0048-9697(99)00327-7
  3. Park, K. S. and Chun, H. D., "Application of steel slag for suppressing contaminant liberation from the sea sediment," J. RIST., 16(2), 132-139(2002).
  4. Ministry of Land, Transport and Maritime Affairs, "Practical Guideline for Remediation Project of Marine Contaminated Sediment,"(2010).
  5. Kim, J. W., Seo, J. B., Kang, M. K., Kim, I. D. and Oh, K. J., "A Study on Phosphate Removal Characteristic of EAF Slag for Submarine Cover Material," Clean Technol., 16(4), 258-264(2010).
  6. Min, J. E., Park, I. S., Ko, S. O., Shin, W. S. and Park, J. W., "Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials," Kor. Soc. Environ. Eng., 30(9), 907-912(2008).
  7. Sun, Y. C., Kim, M. J. and Song, Y. C., "Adsorption of Nitrate and Phosphate onto the Dredged Sediment from a Coastal Fishery," J. Navig. Prt. Red., 36(6), 459-463(2012).
  8. Kang, K., Kim, Y. K. and Park, S. J., "Phosphate Removal of Aqueous Solutions using Industrial Wastes," J. Kor. Soc. Agric. Eng., 55(1), 49-57(2013). https://doi.org/10.5389/KSAE.2013.55.1.049
  9. Sharpley, A. N., Hedley, M. J., Sibbesen, E., Hillbricht- Ilkowska, A., House, W. A. and Ryszkowski, L., "Chapter 11 Phosphorus transfers from terrestrial to aquatic ecosystems. in Phosphorus in the Global Environment: Transfers, Cycles and Management," Edited by Tiessen, H., John Wiley & Sons. Paris, France(1995).
  10. Ministry of Environment, "Manual for Water Quality Testing," Gwacheon(2010).
  11. Ho, Y. S. and McKay, G., "The sorption of lead(II) ions on peat," Water Res., 33, 578-584(1999). https://doi.org/10.1016/S0043-1354(98)00207-3
  12. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption Processes," Proc. Biochem., 34(5), 451-465(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  13. Edzwald, J., "Adsorption of organic compounds by activated carbon. In Water Quality & Treatment: A Handbook on Drinking Water," 6th ed. American Water Works Association (2011).
  14. Huang, W., Wang, S., Zhua, Z., Li, L., Yao, X., Rudolph, V. and Haghseresht, F., "Phosphate removal from wastewater using red mud," J. Hazard. Mater., 158, 35-42(2008). https://doi.org/10.1016/j.jhazmat.2008.01.061
  15. Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J. and Jia, Z., "Phosphate removal from aqueous solutions using raw and activated red mud and fly ash," J. Hazard. Mater., B, 137, 374-383(2006). https://doi.org/10.1016/j.jhazmat.2006.02.011
  16. Unnithan M. R., Vinod, V. P. and Anirudhan, T. S., "Ability of iron(III) - loaded carboxylated ployacrylamide - grafted sawdust to Remove Phosphate Ions from Aqueous Solution and Fertilizer Industry Wastewater: Adsorption Kinetics and Isotherm Studies," J. Appl. Polym. Sci., 84, 2541-2553(2002). https://doi.org/10.1002/app.10579
  17. Streat M., Hellgardt K. and Newton, N. L. R., "Hydrous ferric oxide as an adsorbent in water treatment Part3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions," Proc. Saf. Environ. Prot., 86, 21-30 (2008). https://doi.org/10.1016/j.psep.2007.10.009
  18. Jain, A., Raven, K. P. and Loeppert, R. H., "Arsenite and arsenate adsorption on ferrihydrite: surface change reduction and net OH- release stoichiometry," Environ. Sci. Technol., 33, 1179-1184(1999). https://doi.org/10.1021/es980722e
  19. Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K. and Hirotsu, T., "Phosphate adsorption on synthetic goethite and akaganite," J. Colloid Interface Sci., 298, 602-608(2006). https://doi.org/10.1016/j.jcis.2005.12.054
  20. Goldbug, S. and Johnson, C. T., "Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling," J. Colloid Interface Sci., 234, 204-216(2001). https://doi.org/10.1006/jcis.2000.7295
  21. Stumm, W. and Morgan, J. J., "Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters," Stumm, W. and Morgan, J. J. Wiley-Interscience, New York, 780(1981).
  22. Tang, X. Q., Huang, S. L. and Scholz, M., "Comparison of phosphorus removal between vertical subsurface flow constructed wetlands with different substrates," Water Environ. J. : The Journal, 23(3), 180-188(2009). https://doi.org/10.1111/j.1747-6593.2008.00120.x

Cited by

  1. Assesment of Zeolite, Montmorillonite, and Steel Slag for Interrupting Heavy Metals Release from Contaminated Marine Sediments for Capping Thickness of Reactive materials vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.335
  2. Application of Limestone, Zeolite, and Crushed Concrete as Capping Material for Interrupting Heavy Metal Release from Marine Sediments and Reducing Sediment Oxygen Demand vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.031
  3. Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals vol.38, pp.3, 2016, https://doi.org/10.4491/KSEE.2016.38.3.135
  4. Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments vol.58, pp.2, 2016, https://doi.org/10.5389/KSAE.2016.58.2.001
  5. Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.470