• Title/Summary/Keyword: Fresh concrete

Search Result 660, Processing Time 0.026 seconds

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation (점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델)

  • Cho, Chang-Geun;Kim, Wha-Jung;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.317-323
    • /
    • 2008
  • In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

Displacement prediction of precast concrete under vibration using artificial neural networks

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.559-565
    • /
    • 2020
  • This paper intends to progress models to accurately estimate the behavior of fresh concrete under vibration using artificial neural networks (ANNs). To this end, behavior of a full scale precast concrete mold was investigated numerically. Experimental study was carried out under vibration with the use of a computer-based data acquisition system. In this study measurements were taken at three points using two vibrators. Transducers were used to measure time-dependent lateral displacements at these points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using ANNs. Benefiting ANNs used in this study for modeling fresh concrete, mold design can be performed. For the modeling of ANNs: Experimental data were divided randomly into two parts such as training set and testing set. Training set was used for ANN's learning stage. And the remaining part was used for testing the ANNs. Finally, ANN modeling was compared with measured data. The comparisons show that the experimental data and ANN results are compatible.

Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.655-665
    • /
    • 2016
  • This paper aims to develop models to accurately predict the behavior of fresh concrete exposed to vibration using artificial neural networks (ANNs) model and regression model (RM). For this purpose, behavior of a full scale precast concrete mold was investigated experimentally and numerically. Experiment was performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using both ANNs and RM. For the modeling of ANNs: Experimental data were divided randomly into two parts. One of them was used for training of the ANNs and the remaining part was used for testing the ANNs. For the modeling of RM: Sinusoidal regression model equation was determined and the predicted data was compared with measured data. Finally, both models were compared with each other. The comparisons of both models show that the measured and testing results are compatible. Regression analysis is a traditional method that can be used for modeling with simple methods. However, this study also showed that ANN modeling can be used as an alternative method for behavior of fresh concrete exposed to vibration in precast concrete structures.

A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(I) (Part 1, In the Case of Fluidity Performance and Properties of Fresh Concrete) (유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(I) (제1보, 아직 굳지 않은 콘크리트의 유동화성상을 중심으로))

  • 김무한;권영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.15-20
    • /
    • 1989
  • The effect of superplasticizing agents on the sorkability performance in fresh concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, superplasticizing agents of NL-4000 and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the fluidity performance and workability improvement of superplasticized concrete such as time-dependent change of slump, flow value and compacting factor, air content, bleeding, mixing temperature and setting rate of fresh concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF

Properties of Fresh Concrete with Recycled fine Aggregates (순환잔골재를 사용한 굳지 않은 콘크리트의 특성)

  • Choi, Ki-Sun;You, Young-Chan;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.373-376
    • /
    • 2008
  • The objective of this study is to investigate the properties of fresh concrete with recycled fine aggregates. Three different kinds of fine aggregate with natural, high and low quality recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled fine aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of the concrete mixtures with constant slump is not affected by the replacement ratio of recycled fine aggregate. Therefore, the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

  • PDF

Properties of Concrete Incorporating Recycled Post-Consumer Environmental Wastes

  • Eisa, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.251-258
    • /
    • 2014
  • The use of sustainable technologies such as supplementary cementitious materials, and/or recycled post-consumer environmental wastes is widely used in concrete industry in the last decade. This paper presents the results of a laboratory investigation of normal concrete containing sustainable technologies. Twenty one mixtures (21) were prepared with different combinations of silica fume, fly ash, olive's seed ash, and corncob ash (CCA). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Based on the results obtained in this study and the analyses conducted, the following observations were drawn: replacing the cement by olive's seed ash or CCA has a significant effect on fresh concrete workability. Olive's seed ash increased the slump by more than 200 % compared to the control mixtures. The compressive strength of mixtures containing olive's seed ash showed by 45 and 75 % decrease compared to the control mixtures. The 28 days compressive strength of mixtures produced by CCA of 10 % replacement decreased by 41 % compared to the control mixture.

An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete (해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구)

  • 남상일;김문한;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF

Fresh Properties and Strength Development of High Volume Fly Ash Concrete (많은 양의 플라이애쉬를 혼입한 콘크리트의 굳기전 특성 및 강도 발현)

  • 이진용;최수홍;강석화;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.99-104
    • /
    • 1998
  • A study is carried out to investigate the characteristics of concrete various level(0~60%) of fly ash. These results indicate that compressive strength of fly ash concrete seems to be slightly higher than that of ordinary concrete between 7 and 28 days, thereafter the strength of fly ash concrete is significantly higher. In fresh properties of the fly ash concrete, the loss of slump and air content with time up to 120 minutes is lower, but the setting time is increased with increasing fly ash content.

  • PDF

A Fundamental Study on development of Ultra-Flow Concrete - part2.The Preformance estimation of Fresh Concrete - (초유동 콘크리트의 개발에 관한 기초적 연구 -제 2보 : Fresh 콘크리트의 성능평가 -)

  • 김화중;김재훈;박정민;최신호;이승조;김태곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.48-53
    • /
    • 1995
  • Recently, work of construction industry is not enough to do in tamping because of a lack of expert, advanced-age of worker, increase of structure of high-dengity arrangment and machanization of concrete pumping method Accordingly it is required for high-qualuily concrete with excellent flowability, Self-placeability and regregation registance. In this point of view, this study is investigated for requiremend properties of ultar-flow concrete using dimestic material as for development of Ultra-Flow concrete in the side of material

  • PDF