DOI QR코드

DOI QR Code

Model for Flow Analysis of Fresh Concrete Using Particle Method with Visco-Plastic Flow Formulation

점소성 유동 입자법에 의한 굳지 않은 콘크리트의 유동해석 모델

  • Cho, Chang-Geun (Hanwha E&C Research Institute of Technology) ;
  • Kim, Wha-Jung (School of Architectural and Civil Engineering, Kyungpook National University) ;
  • Choi, Yeol (School of Architectural and Civil Engineering, Kyungpook National University)
  • 조창근 ((주)한화건설 기술연구소) ;
  • 김화중 (경북대학교 건설공학부) ;
  • 최열 (경북대학교 건설공학부)
  • Published : 2008.06.30

Abstract

In the current study, A model for the flow analysis of fresh and highly flowable concrete has been developed using a particle method, the moving particle semi-implicit (MPS) method. The phenomena on the flow of concrete has been considered as a visco-plastic flow problem, and the basic governing equation of concrete particle dynamics has been based on the Navier-Stokes equation in Lagrangian form and the conservation of mass. In order to formulate a visco-plastic flow constitutive law of fresh concrete, concrete is modeled as a highly viscous material in the state of non-flow and as a visco-plastic material in the state of flow after reaching the yield stress of fresh concrete. A flow test of fresh concrete in the L-box was simulated and the predicted flow was well matched with the experimental result. The developed method was well showed the flow motion of concrete particles because it was formulated to be based on the motion of visco-plastic fluid dynamics.

본 연구에서는 굳지 않은 콘크리트 및 유동 콘크리트의 흐름 거동에 관한 해석 시뮬레이션 모델의 개발에 관한 것으로, 입자법의 일종인 MPS법 (moving particle semi-implicit method)을 적용하였다. 콘크리트의 유동 현상을 점소성의 흐름 문제로 고려하였으며, 콘크리트 입자의 운동에 관한 지배방정식은 라그랑지 정식화의 Navier-Stokes 방정식과 질량보존의 법칙에 기초하도록 하였다. 굳지 않은 콘크리트의 점소성 흐름 구성관계의 정식화를 위하여 콘크리트는 부동 상태인 경우 고점성체의 유체로, 유동상태인 경우 항복응력 이후 점소성체의 유체로 모델링하였다. 개발된 모델을 이용하여 L-형 박스의 콘크리트 유동 시험에 대해 시뮬레이션 하였으며, 그 결과 예측된 흐름량은 실험의 흐름량과 잘 일치하는 것으로 나타났다. 개발된 입자법의 해석 모델은 점소성 유체의 운동현상에 기초하여 정식화 되어 콘크리트 입자의 유동 및 운동 현상을 잘 묘사해 주는 것으로 평가된다.

Keywords

References

  1. 조창근, 김화중, 최열, 박문호, "굳지 않은 콘크리트의 점소성 유동 구성관계의 정식화," 한국콘크리트학회 봄학술발표회 논문집, 19권, 1호, 2007, pp. 589-592
  2. 越塚, 數値流體力學, 培風館, 1997, 223 pp
  3. 入部, 伊良波, 富山, 松原, "フレッシュコンクリトの流動問題への粒子法の摘用,"コンクリト工年次論文集, Vol. 25, No. 1, 2003, pp. 905-910
  4. 山田, "フレッシュコンクリ一トのレオロジ一硏究," セメント.コンクリ一ト, No. 707, 2006, pp. 18-27
  5. 山田, 細田, 宮川, "有限要素法によるフレッシュコンクリトの粘塑性流動解析," コンクリト工年次論文集, Vol. 23, No. 2, 2001, pp. 253-258
  6. ACI Committee 309, "Behavior of Fresh Concrete During Vibration," Journal of ACI, Vol. 78, No. 1-2, 1981, pp. 36-53
  7. Banfill, P. F. G., Rheology of Fresh Cement and Concrete, E & FN Spon, London, 1991, 373 pp
  8. Bartos, P., Fresh Concrete: Properties and Tests, Elsevier, 1992, 292 pp
  9. Ferraris, C. F., "Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report," Journal of Research of the National Institute of Standards and Technology, Vol. 104, No. 5, 1999, pp. 461-478 https://doi.org/10.6028/jres.104.028
  10. Koshizuka, S. and Oka, Y., "Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid," Nucl. Sci. Eng., Vol. 123, 1996, pp. 421-434 https://doi.org/10.13182/NSE96-A24205
  11. Koshizuka, S., Tamako, H., and Oka, Y., "A Particle Method for Incompressible Viscous Flow with Fluid Fragmentation," Comput. Fluid Dynamics J., Vol. 4, 1995, pp. 29-46
  12. Liu, M. B., Liu, G. R., Zong, Z., and Lam, K. Y., "Computer Simulation of the High Explosive Explosion using Smoothed Particle Hydrodynamics Methodology," Computers & Fluids, Vol. 32, No. 3, 2003, pp.305-322 https://doi.org/10.1016/S0045-7930(01)00105-0
  13. Miyamoto, Y. and Yamamoto, Y., "Study on the Fluidity and the Mix Proportion of High-Fluidity Concrete by Using the J Shaped Flow Test," Journal Struct. Constr. Eng., Architectural Institute of Japan, No. 547, 2001, pp. 9-15
  14. Puri, U. C. and Uomoto, T., "Characterization of Distinct Element Modeling Parameters for Fresh Concrete and its Application in Shotcrete Simulations," Journal of Materials in Civil Engineering, Vol. 14, No. 2, 2002, pp. 137-144 https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(137)
  15. Saak, A. W., Jennings, H. M., and Shah, S. P., "A Gerneralized Approach for the Determination of Yield Stress by Slump and Slump Flow," Cement and Concrete Research, Vol. 34, 2004, pp. 363-371 https://doi.org/10.1016/j.cemconres.2003.08.005
  16. Tanigawa, Y., Mori, H., and Watanabe, K., "Computer Simulation of Various Kinds of Consistency and Rheology Tests for Fresh Concrete by Viscoplastic Finite Element Method," Proceedings of RILEM Colloquium on Properties of Fresh Concrete, Hanover, 3-5, Oct., 1990, pp. 301-308
  17. Tanigawa, Y., Mori, H., and Watanabe, K., "Analytical Study on Flow of Fresh Concrete by Suspension Element Method," Proceedings of RILEM Colloquium on Properties of Fresh Concrete, Hanover, 3-5, Oct., 1990, pp. 309-316
  18. Tanigawa, Y., Mori, H., Watanabe, K., and Noda, Y, "Analytical Study on Flow Behavior of Fresh Concrete by Viscoplastic Suspension Element Method," Transactions of the Japan Concrete Institute, Vol. 12, 1990, pp. 41-48
  19. Tanigawa, Y., Mori, H., Watanabe, K., and Noda, Y, "Flow Simulation of Fresh Concrete by Viscoplastic Divided Space Element Method," Proc. of 33rd Japan Congress on Materials Research, 1990, pp. 227-233
  20. Tanigawa, Y. and Mori, H., "Analytical Study on Deformation of Fresh Concrete," Journal of Engineering Mechanics, Proc. of American Society of Civil Engineers, Vol. 115, No. 3, 1989, pp. 493-508
  21. Tattersall, G. H. and Banfill, P. F. G., The Rheology of Fresh Concrete, Pitman Advanced Publishing Program, 1983, 359 pp

Cited by

  1. Flow Experiments and Analysis of Highly Flowable Concrete Considering the Effect of Dosages of SP Admixture and W/C Ratios vol.26, pp.6, 2014, https://doi.org/10.4334/JKCI.2014.26.6.671