• 제목/요약/키워드: Frequency and temperature

검색결과 3,808건 처리시간 0.036초

Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites

  • Colakoglu, M.
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.111-124
    • /
    • 2008
  • The effect of temperature on natural frequency and damping is investigated in two different composite materials, Kevlar 29 fiber woven and polyethylene cloth, used especially to design ballistic armor. A damping monitoring method is used experimentally to measure the frequency response curve and it is also modeled numerically using a finite element program. The natural frequencies of a material, or a system, are a function of its elastic properties, dimensions and mass. This concept is used to calculate theoretical vibration modes of the composites. The damping properties in terms of the damping factor are determined by the half-power bandwidth technique. Numerically analyzed and experimentally measured time response curves are compared. It is seen that polymer matrix composites have temperature dependent mechanical properties. This relationship is functional and they have different effects against temperature.

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.297-313
    • /
    • 2022
  • The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

Optimal Design of Resonance Frequency for LLC Converter

  • Chung, Bong-Geun;Moon, Sang-Cheol;Jin, Cheng-Hao
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.159-160
    • /
    • 2015
  • Recently, it is increased to use the portable device with small size. It is also increasing for demand of a small size adapter. To reduce the size of components, switching frequency has to be increased. But it causes higher switching loss and temperature of components. Especially, the temperature of adapter must be limited because adapter can be easily touched when portable device is being charged. To reduce temperature of adapter, high efficiency is essential. To solve this problem, this paper proposes design of resonance frequency optimization for LLC converter with high efficiency and low temperature of passive components.

  • PDF

과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰 (A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제29권2호
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

전극재에 의한 실리콘 고무의 C-V 특성에 관한 연구 (A Study on Properties of C-V of Silicone Rubber due to Electrode Materials)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.721-726
    • /
    • 2015
  • In this study, the properties of C-V degradation for thermal conductivity silicone rubber sample which is attached by copper-copper, copper-aluminum, aluminum-aluminum on upper-side and under-side has been measured at temperature of $80^{\circ}C{\sim}140^{\circ}C$. The results of this study are as follows. In case the frequency is increased, it found that the electrostatic capacity increased with increasing temperature to $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$ regardless of kind of electrode. It found that the electrostatic capacity increased with becoming high temperature range of frequency regardless of kind of electrode. This result is considered to be caused by thermal absorption on the thermal conductivity silicone rubber sample. It found that the electrostatic capacity decreased with increasing temperature and frequency. This result is considered to be caused by molecular motion of C-F radical or OH radical.

온도변화에 따른 사장교 케이블 고유진동수 분석 (Analysis of the Frequency for Cable of Cable-Stayed Bridges to Temperature Variation)

  • 이현철;김진수;박경호;이종재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권2호
    • /
    • pp.23-34
    • /
    • 2021
  • 최근 국내외 사용빈도가 높고 향후 건설계획이 많은 사장교의 주부재인 케이블을 대상으로 하였다. 우선 케이블의 온도 변화와 대기온도 변화 등으로 영구적으로 사용되는 온도하중에 대해 보통지방의 온도변화를 고려하여 실험을 수행하였다. 케이블의 온도변화를 가하여 동적특성의 변화를 여러 가지 시스템을 적용하여 케이블의 동적특성을 비교 분석하였다. 케이블의 동적특성을 비교분석한 결과 온도상승에 따른 케이블의 가속도, 고유진동수 및 장력은 감소하는 경향이 뚜렷하였으며 케이블의 변위의 영향정도를 분석하였으며 케이블의 모드특성에 대한 결과를 분석하였다. 특히 케이블의 온도변화에 따른 케이블의 가속도, 고유진동수 및 장력에 대해 상관관계를 분석한 결과 가속도 및 고유진동수 대비 케이블 장력의 민감도가 큰 것으로 나타났다.

링발진기를 이용한 CMOS 온도센서 설계 (Design of CMOS Temperature Sensor Using Ring Oscillator)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제19권9호
    • /
    • pp.2081-2086
    • /
    • 2015
  • 링 발진기를 이용한 온도센서를 공급전압 1.5volts를 사용하여 0.18㎛ CMOS 공정으로 설계하였다. 온도센서는 온도가 변화하더라도 일정한 출력주파수를 가지는 링 발진기와 온도가 증가하면 출력주파수가 감소하는 링 발진기를 이용하여 설계하였다. 온도를 디지털 값으로 변환하기 위해 온도에 무관한 링 발진기의 출력 신호는 카운터의 클럭 신호로 사용하였으며, 온도에 따라 변화하는 링 발진기의 출력신호는 카운터의 인에이블 신호로 사용하였다. 설계된 회로의 HPICE 시뮬레이션 결과 회로의 동작온도가 -20℃에서 70℃까지 변화할 때 온도 에러는 -0.7℃에서 1.0℃ 이내였다.

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • 제8권4호
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

Design of Temperature Stable FLL Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.197-200
    • /
    • 2010
  • The FLL(frequency locked loop) circuit is used to generate an output signal that tracks an input reference signal. The locking time of FLL is short compared to PLL(phase locked loop) circuit because the output signal of FLL is synchronized only in frequency. Also the FLL is designed to allow the circuit to be fully integrated. In this paper, the temperature stable FLL circuit is designed by using full CMOS transistors. When the temperature is varied from $-20^{\circ}C$ to $70^{\circ}C$, the variation of output frequency is about from -2% to 1.6% from HSPICE simulation results.

백서에서 경피적 고주파 자극에 따른 온도 변화 및 조직 변화 (Effect of Transcutaneous High Frequency Wave on the Change of Tissue Temperature and Histology in Sprague-Dawley Rat)

  • 김경아;문창원;송다현;김상준
    • Clinical Pain
    • /
    • 제15권2호
    • /
    • pp.92-96
    • /
    • 2016
  • Objective: High frequency wave has been used in cancer treatment and cosmetic area but not in musculoskeletal pain yet. The purpose of this study is to evaluate temperature distribution according to depth and confirm safety of high frequency wave through animal study. Method: High frequency wave was applied to the posterior limb of 9 Sprague-Dawley rats for 20 minutes (experimental group) and no wave was used in the same number of rats for control group. Tissue temperature was measured from skin surface to 1 cm depth (surface, 1 mm, 5 mm, and 1 cm) for 5 seconds. Results: In the experimental group, temperature was elevated 3.2℃ at skin surface, 2.87℃ at 1 mm, 2.25℃ in 5 mm, and 1.74℃ in 1 cm depth. These were significantly different from those in the control group (p<0.001). There was no bulla or redness in the skin after high frequency wave stimulation and neither change of myocytes nor collagen degeneration was found in the tissue histology. There was no apoptosis in the skin surface and muscle layer in TUNEL assay. Conclusion: High frequency wave elevated tissue temperature from the skin to muscle layer without both histologic change and apoptosis.