DOI QR코드

DOI QR Code

Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites

  • Colakoglu, M. (Faculty of Technical Education, 03200 Sezer Campus, Afyon Kocatepe University)
  • Published : 2008.06.01

Abstract

The effect of temperature on natural frequency and damping is investigated in two different composite materials, Kevlar 29 fiber woven and polyethylene cloth, used especially to design ballistic armor. A damping monitoring method is used experimentally to measure the frequency response curve and it is also modeled numerically using a finite element program. The natural frequencies of a material, or a system, are a function of its elastic properties, dimensions and mass. This concept is used to calculate theoretical vibration modes of the composites. The damping properties in terms of the damping factor are determined by the half-power bandwidth technique. Numerically analyzed and experimentally measured time response curves are compared. It is seen that polymer matrix composites have temperature dependent mechanical properties. This relationship is functional and they have different effects against temperature.

Keywords

References

  1. R. D. Adams and M. R. Maheri, J. Alloy. Compounds 355, 126-130 (2003) https://doi.org/10.1016/S0925-8388(03)00238-X
  2. M. Alagar, A. A. Kumar, K. P. O.Mahesh and K. Dinakaran, Eur. Polym. J. 36, 2449-2454 (2000) https://doi.org/10.1016/S0014-3057(00)00038-0
  3. T. J. Kang and C. Kim, Compos. Sci. Technol. 60, 773-784 (2000) https://doi.org/10.1016/S0266-3538(99)00185-2
  4. S. C. Tjong, S.-A. Xu, R. K.-Y. Li and Y.-W. Mai, Compos. Sci. Technol. 62, 831-840 (2002) https://doi.org/10.1016/S0266-3538(02)00037-4
  5. H. Y. Kim and W. Hwang, Compos. Struct. 55, 51-62 (2002) https://doi.org/10.1016/S0263-8223(01)00136-2
  6. N. Meredith, Dent. Mater. 15, 98-104 (1999) https://doi.org/10.1016/S0109-5641(99)00019-6
  7. M. M. Wallace and C. W. Bert, Proc. Okla. Acad. Sci. 59, 98-101 (1979)
  8. D. Ray, B. K. Sarkar, S. Das and A. K. Rana, Compos. Sci. Technol. 62, 911-917 (2002) https://doi.org/10.1016/S0266-3538(02)00005-2
  9. J. M. Berthelot and Y. Sefrani, Compos. Sci. Technol. 64, 1261-1278 (2004) https://doi.org/10.1016/j.compscitech.2003.10.003
  10. Y. Sefrani and J. M. Berthelot, Composites: Part B 37, 346-355 (2006) https://doi.org/10.1016/j.compositesb.2005.10.001
  11. H. Kishi, M. Kuwata, S. Matsuda, T. Asami and A. Murakami, Compos. Sci. Technol. 64, 2517-2523 (2004) https://doi.org/10.1016/j.compscitech.2004.05.006
  12. C. Y. Wei and S. N. Kukureka, J. Mater. Sci. 35, 3785-3792 (2000) https://doi.org/10.1023/A:1004817011240
  13. S. Zhang and H. Chen, Adv. Compos. Mater. 14, 199-210 (2005) https://doi.org/10.1163/1568551053970681
  14. V. G. Geethamma, G. Kalaprasad, G. Groeninckx and S. Thomas, Composites: Part A 36, 1499-1506 (2005) https://doi.org/10.1016/j.compositesa.2005.03.004
  15. M. A. Lopez-Manchado and M. Arroyo, Polymer 41, 7761-7767 (2000) https://doi.org/10.1016/S0032-3861(00)00152-X
  16. M. Colakoglu and K. L. Jerina, Fatigue Fract. Engng Mater. Struct. 26, 79-84 (2003) https://doi.org/10.1046/j.1460-2695.2003.00603.x
  17. M. Colakoglu, Measurement and analysis of damping factor in engineering materials to assess fatigue damage, Doctoral Thesis, Washington University in St. Louis, MO, USA (2001)
  18. A. D. Dimarogonas, Vibration for Engineers, 2nd edn. Prentice Hall, Upper Saddle River, NJ, USA (1996)