• 제목/요약/키워드: Frequency Response Function Method

검색결과 532건 처리시간 0.028초

부분구조응답함수감소법을 이용한 동적구조변경 (Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM))

  • 지태한;박영필
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

불규칙파(不規則波에) 대한 압력식(壓力式) 파고계(波高計)의 적용성(適用性)에 관한 연구(研究) (Surface Elevation Recovery Methods from Pressure Gage for Irregular Waves)

  • 권정곤;강주복
    • 대한토목학회논문집
    • /
    • 제12권4_1호
    • /
    • pp.129-136
    • /
    • 1992
  • 압력식(壓力式) 파고계(波高計)에서 측정(測定)되어진 압력파형(壓力波形)으로부터 수위변동(水位變動)을 추정(推定)하는 방법(方法)에 대해서 1) Fast Fourier Transform Method(FFTM), 2) Local Curvature Method(LCM), 3) Individual Wave Method(IWM)의 3가지 방법(方法)을 비교(比較)하여, 천해역(淺海域)에 있어서의 파랑측정(波浪測定)에 대한 압력식(壓力式) 파고계(波高計)의 적용성(適用性)에 대해 검토(檢討)했다. 그 결과(結果) 다음과 같은 결론(結論)을 얻었다. 1) 측정(測定)되어진 압력파형(壓力波形)으로부터 수위변동(水位變動)을 추정(推定)할 때에 사용(使用)되어지는 이론선형응답함수(理論線形應答函數)(Hp=coshkh/coshk(h+z)의 적용가능범위(適用可能範圍)(cut-off-frequency)는 $kh{\leq}3.0$이다. 그리고 kh > 3.0의 영역(領域)에 있어서의 이론선형응답함수(理論線形應答函數)는 일정치(一定値)를 부여함으로써 매우 정도높은 수위변동(水位變動)을 얻을 수 있다. 2) LCM에 의한 수위변동(水位變動)의 변환(變換)에 있어서는 측정(測定)된 압력파형(壓力波形)속에 포함되어 있는 단주기파(短週期波)들에 의해 크게 영향(影響)을 받는다. 그러므로, kh > 1.5인 영역(領域)의 압력변동(壓力變動)을 무시할 필요(必要)가 있다. 3) FFTM 및 IWM에 의해 추정(推定)되어진 통계량(統計量)의 재현성(再現性)은 양호하고, 특(特)히 평균주기(平均週期)의 재현성(再現性)으로부터 비선형성(非線型性)이 강한 영역(領域)에 있어서는 IWM이 유효(有效)한 수단이라고 사려되어진다.

  • PDF

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

Frequency Response Analysis of Cylindrical Shells Conveying Fluid Using Finite Element Method

  • Seo Young-Soo;Jeong Weui-Bong;Yoo Wan-Suk;Jeong Ho-Kyeong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.625-633
    • /
    • 2005
  • A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degrees-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools.

임피턴스헤드로 진동계측시 변환기의 부착영향을 보상하는 방법에 관한 연구 (A Study on the Compensation of Transducer Effects for the Measurement of Vibration with an Impedance Head)

  • 이현엽;박재영
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.117-122
    • /
    • 1995
  • The transfer matrix method is proposed to compensate the attachment effect of a piezo-electric impedance head. To validate the proposed method, an experiment is carried out for axial vibration of a uniform rod for which an analytical solution is known. The impedance head is attached to the test rod by a stud and is connected to the exciter. The frequency response function is mesured by applying random excitation from the electro-magnetic exciter. The frequency response function compensated by the method proposed in this research shows good agreement with the analytical solution.

  • PDF

주파수 응답함수를 이용한 구조 파라메터 예측 (Identification of Structural Parameters from Frequency Response Functions)

  • 김규식;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

자동차 시트 및 마네킹 시스템의 강제 진동 (Forced Vibration of Car Seat and mannequin System)

  • 김성걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.122-132
    • /
    • 2000
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in 'Free Vibration of Car seat and Mannequin System' nonlinear and linear equations of motions were rederived for forced vibration and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests mannequin's head had a lot of problems and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints linear analyses were performed. New sets of linear spring and damping coefficients and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance indicating that this is a feasible method of modeling seated occupants.

  • PDF

자동차 시트 및 마네킹 시스템의 진동 II (Vibration of Car Seat and Mannequin System II)

  • 김성걸;김준현;박기홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.398-403
    • /
    • 2001
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in previous paper. Nonlinear and linear equations of motions were rederived for forced vibration, and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests, mannequin's head had a lot of problems, and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints, linear analyses were performed. New sets of linear spring and damping coefficients, and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance, indicating that this is a feasible method of modeling seated occupants.

  • PDF

하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구 (A Experimental study on natural frequency measurement of passenger car tire under the load and rotation)

  • 김병삼;홍동표;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

하중을 받고 회전하는 승용차 타이어의 반경방향 고규진동수 측정에 관한 실험적 연구 (An Experimental Study on the Measurement of Radial Directional Natural Frequency in a Passenger Car Tire Roboting under the Load)

  • 김병삼;홍동표;지창헌
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.1-13
    • /
    • 1996
  • The measurement of radial directional natural frequency ina passenger car tire rotating under the load is studied. In order to obtain theoretical matural frequency and mode shape, the ploane vibration of a tire is modeled to that of circular beam. By esing the Tieking method based on Hamiltons's principle, theoretical results are determined by considering tension horce due to tire inflation pressure, retational velocity and tangential, radial stiffness. Radial directional modal parameters varying with the inflation pressure, load, rotational velocity are experimentally determined by using frequency response function method. The results show that experimental conditions canbe considered as the parameters which shift the natural frequency.