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Frequency Response Analysis of Cylindrical Shells Conveying
Fluid Using Finite Element Method

Young-Soo Seo, Weui-Bong Jeong*, Wan-Suk Yoo
Department of Mechanical Engineering, Pusan National University,
Jangjeon-dong, Kumjung-ku, Pusan 609-735, Korea
Ho-Kyeong Jeong
Structure & Materials Department KSLV Technology Division,
45 Eoeun-Dong, Yuseong-Gu, Daejeon 305-333, Korea

A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with
uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the
Sanders’ theory and the fluid in cylindrical shell is considered as inviscid and incompressible so

that it satisfies the Laplace’s equation. A beam-like shell element is used to reduce the number

of degrees-of-freedom by restricting to the circumferential modes of cylindrical shell. An

estimation of frequency response function of the pipe considering of the coupled effects of the

internal fluid is presented. A dynamic coupling condition of the interface between the fluid and

the structure is used. The effective thickness of fluid according to circumferential modes is also
discussed. The influence of fluid velocity on the frequency response function is iflustrated and
discussed. The results by this method are compared with published results and those by

commercial tools.
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1. Introduction

The dynamic behavior of a cylindrical shell
conveying fluid is a practical interest in the field
of the power plants or oil pipelines. The struc-
tural characteristics of cylindrical shells can be
analyzed by the commercial software such as
Nastran. The commercial software for structural
analysis deals with internal fluid as added mass.
However, the internal fluid with velocity has
effects on not only mass but also damping and
stiffness of the shell structure. The added mass
of the internal fluid changes according to the
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circumferential mode. The pipe system with fluid
flows has studied for a long time. These studies
dealt with pipes as Euler-Bernoulli beam, Timo-
shenko beam and thin cylindrical shell. The
pipe which behaves like a beam was surveyed
by Paidoussis and Issid (1974). They discussed
the dynamics and stability of pipes conveying
fluid with various boundary conditions and a
steady and a turbulent flow. Ginsberg (1973)
carried out the stability analysis, based on the
Floquet theory, of the pipe with a pulsating flow.
Paidoussis and Sundararajan (1975) developed
numerical methods to check whether a point lies
in the stable or the unstable region by calculating
the determinant of a large matrix for every point
in the parametric space.

The dynamics of thin cylindrical shell is stu-
died extensively by Donnell (1993), Love (1952)
and Sanders (1963). These shell theories are used
to solve the behavior of pipes conveying fluid.
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Mazuch et al.(1996) studied thin walled shells
in contact with inviscid, incompressible fluid by
finite element method and experiment. The natu-
ral frequencies and the mode shapes for the free
vibrations of shell were computed and measured.
Jain (1974) investigated the dynamics of ortho-
tropic cylindrical shell. He used the Love’s shell
theory and potential flow theory. A similar case
for the compressible fluid was studied by Chen
et al. (1997). Selmane and Lakis (1997) presented
the vibration of an open anisotropic shell with
flowing fluid. They investigated the influence of
flowing fluid on the vibration of the shell. Zhang
et al.(2001) presented the dynamics of the thin
shell conveying fluid by applying Sanders’ thin
shell theory. He used the finite element method to
analyze the shell and the fluid. Lee et al.(1999)
developed the a nonlinear finite element program
using 3-D degenerated shell element and the first
order shear deformation theory to consider the
large deformation of the clamped laminated cy-
lindrical shell. Ryu et al.(2004) investigated the
stress on orthotropic composite cylindrical shells
using the equation of Donnell’s theory and pres-
ented the result as the stress concentration factor.
However, most of previous works were interested
in only the natural frequencies or the stability
analysis. The frequency response characteristics
of forced vibration of the cylindrical shell con-
veying fluid have not been discussed.

In this paper, a cylindrical shell conveying
fluids is modeled by finite element method based
on Zhang et al.(2001) in order to develop the
frequency response analysis of the forced vibra-
tion. The dynamic behavior of cylindrical shell
is assumed to satisfy the Sanders’ thin shell theo-
ry. The fluid is assumed to satisfy the Laplace’s
equation. A beam-like shell element is used to
reduce the number of nodes because shell element
needs lots of nodes. A dynamic pressure of the
fluid is obtained from the compatibility condition
that the radial component of the internal fluid
and the shell structure has the same velocity. This
method does not need to generate meshes for the
internal fluid because the pressure in the fluid
is solved analytically. The effective mass of the
fluid is obtained according to the circumferential

mode. The velocity of fluid has effects on the
damping and the stiffhess of the pipe. The fre-
quency response function of the pipe with taking
into consideration of the coupled effects of the
fluid is presented. Some numerical results by
this method are compared with those by Nastran
(2001), soft-
ware, and experimental results of previous work
(Mazuch et al., 1996).

commercial structural analysis

2. Finite Element Formulation

2.1 Dynamics of cylindrical shell

A cylindrical shell conveying internal fluid is
modeled as shown in Fig. 1. The Sanders’ thin
shell theory is used to derive the equation of
motion of the cylindrical shell. That is, the shell
thickness is infinitesimal in comparison with the
radius of curvature (i.e., R/h>>10), the displace-
ment is small, and the shell wall thickness remains
constant. The finite element method is used to
analyze the dynamics of the cylindrical shell
containing fluid. The kinetic energy, potential
energy and virtual work which are acting on
element can be expressed as follows :

To= J, oshla) {4} dAs (1
Ue=5 [ (e)7[D){e}dA )

aW=]As{au}’({1>s}+{qs}> dAs (3

¥
¢
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Fig. 1 A model of cylindrical shell conveying inter-
nal fluid
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where ps is pressure of the fluid acting on the
surface of the cylindrical shell and ¢s is external
force acting to cylindrical shell. The relation of
strain vector { £} and displacement vector {#} is
given by

{e}=[BNu} (4)

And, the relation of stress vector { ¢} and strain
vector {&} can be expressed by

{o}=[D){e} (5)

where

{0}={Nxx, Noo, Nus, Msx, Mss, Mxo}"=[D]{ ¢}
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The shell element type could be used to formu-
late the cylindrical shell. But it needs lots of
element generation which cause the problems of
memories and computations. Let us assume the
displacement of a cylindrical shell by the follow-
ing Fourier’s cosine expansion :

wu={ ux cos n0, ussin n 6, ur cos n8}* (6)

where ux, u, and u, are the displacements of

shell in axial, tangential and radial direction.
The circumferential modes of axial and radial
displacements are assumed as cos #8{n=0, I,
2, »-+), and that of tangential mode is assumed
as sin #n@(n=0, 1, 2, ---). This assumption is
(Petyt,
1990). Figure 2 shows the circumferential mode
shapes according to the circumferential mode
number (). This assumption makes it possible
not to generate meshes in circumferential direc-

reasonable for circular cross-section

tion, which gives the reduction of degree-of-
freedom in finite element formulation. This type
of element is called beam-like shell element in
this paper. The beam-like shell element generate
meshes the same as beam element. For finite
element formulation, the displacements in ele-
ments should be expressed by shape function and
nodal displacements as follows:

ux=[Ni(x) Np(x)] {Z

X7

b= Nalde )
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The radial displacement of cylindrical shell can
be assumed to behave like a lateral displacement

= [Nsr] { Ur }e (9)

of a beam. Thus, the shape function in Eq. (9) is
the same as that of lateral vibration of a beam.
The ¢=0u,/ox denotes the slope of #,. So, the
displacements in elements can be simply written
as follows :

{uy={ux uo u- ' =[NJ{#} (10)

00©

Fig. 2 Circumferential mode shapes according to the
circumferential mode number (%)
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where
{0y =it Ho:i Uri b: Uss Uos Ur; ;)7 (11)

Here, [N;] is a shape function matrix and { )}
is a nodal displacement vector. Any shape func-
tion, N;(z=1, ---, 8), can be defined by user.
Linear functions of shape functions are used in
this paper.

Substituting Eqs. (4), (5) and (10) into Egs.
(1)-(3) gives the mass, the stiffness matrix and
the force vector of the cylindrical structure as
follows :

[mls= [ peh[ NI [Ne] dAs

—oehR [ [ NN dedo .

[k1.= [ [BI"[D][BldA

2n rlg (13)
=R [ [“[B)T (D) B)dxds

(7)s= [ (N1 TpadAst [ [N)Tq:dAs (19)

where ps is the density of shell and R is a radius
of cross-section and % is a wall thickness. The
first term in Eq. (14) is the coupling effect of the
fluid. The pressure pg of the fluid at the inter-
face acts normally on the structure of cylindrical
shell. The second term of Eq. (14) is equivalent
force due to external distributed force gs.

2.2 Dynamics of internal fluid

It is assumed that the fluid in a cylindrical
shell is incompressible, irrotational and inviscid
so that the behavior of fluid satisfies the La-
palce’s equation. The Laplace’s equation in cylin-
drical polar coordinate is as follows:

_FO 1 FO | PO

1 9@
ot e T trar 0 (Y

v or

Vio

where @ is the velocity potential of the fluid.
The velocity of fluid, 7, can be obtained from
the relation 7=V ®@. A method of separation of
variable is used to solve Eq. (15). The potential
function is assumed as follows:

Q(r, 8, x, )=U(r)Rx, 6, ) (16)

The general solution ¥ (#) can be easily ob-
tained by substituting Eq. (16} into Eq. (15) as
follows :

U(r)=Cifr(Ar) + Co Yu(Ar) (17)

where C, and C; are constant. Here, J,(A») and
Y.(A») denote the Bessel function of the first
and second kind of order #. In order to have
finite value of pressure in the center of the cross-
section (#=0), C, must be zero.

To be fully coupled between the shell and
fluid, the radial velocities of the shell and fluid
must be the same at the interface. Thus, the fol-
lowing compatibility condition can be obtained.

_00 _ dur

U=y T ot

our
+U 8x r=R (18)
Here, U is the steady velocity of the fluid. Sub-
stituting Eq. (17) and Eq. (18) into Eq. (16)
yields

O, b, 5 )= o R ar

]n(/b”) ( our

aur
ot +U )r:R (19)

ox
This characteristic values, A, can be obtained
from the characteristic equation (Zhang et al,

2001). The velocity of internal fluid can be ob-
tained from velocity potential function as fol-

lows :
00
ve) (U 1";‘ . U
7=9 ve ¢ + 0 = -7’_8—6 + 0 (20)
v L0 0
or

The dynamic pressure of the fluid can also be
obtained from velocity potential :

pd=—pf(a5+U%%> (21)
where oy is the density of fluid.

2.3 Coupled equation of motion

The dynamic pressure of fluid acting on the
surface of cylindrical shell can be obtained by
substituting Eq. (9) and Eq. (19) into Eq. (21),
which yields
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pa=—p;([Ne: W} +2U[N; W 22 }

+UP NG D Re ( J+(AR)

> (22)

Substituting Eq. (22) into Eq. (14) and taking
their real part, the equation of motion of a cylin-
drical shell with taking into consideration of the
coupled effects of internal fluid yields

([m]s+ [ml o) {u}+ [l i}

+([Rls+[RI @) =(F)s (23)

where,

[mls= [ o/ INe) [N Y hsdA; - (20)

tel,=20 [, (N1 200

hydAs (25)

d[Ns-]™ [ Nsr]

— T2
(], v A Ox ox

hydAs (26)
where [m]s, [#]s is given by Eq. (12) and Eq.
(13). Here, %y shows the effective thickness of
fluid given as follows :

hy=Re( 0L )on=12 @1
The effective thickness of fluid depends on the
order of circumferential mode and the charac-
teristic value. The velocity of internal fluid makes
effects on damping and stiffness matrix of the
structure of cylindrical shell. The stationary fluid,
velocity U=0, acts only on mass matrix as an
added mass.

2.4 Frequency response

The characteristic value, A, depends on the
order, n, of circumferential mode. And the effec-
tive thickness of fluid, ks, given in Eq. (27),
depends on the characteristic value A. Thus, the
effective thickness, /s, can be obtained according
to the order z. The coupled equation of motion of
a cylindrical shell conveying fluid, given in Eq.
(23), must be solved according to the order, #, of
circumferential mode.

To calculate the frequency response function,
let us assume the external harmonic force applied
to cylindrical shell as

{F}s={F}e* (29)

The beam-like shell element can reduce the de-
gree-of-freedom by assuming the circumferential
modes. Instead, the equation of motion given in
Eq. (23) should be solved for every circumferen-
tial mode, n=0, 1, 2, ---. Refering to Eq. (23), the
harmonic response of #-th order circumferential
mode, { # }», can be determined as the solution of
the following algebraic equation

[([R]s+[k]S) —?([m]s+[m],)
+iwlclld @ta={F)s

where,

(30)

{ @t} n={thxn, thon, #hrm)”

Since equations of motion are given by the
superposition of the solution according to the
order, #. The displacement of a cylindrical shell
can be obtained as follows:

Ux= Z‘bz?xn cos nfe’ @t (31)
n=
(-] _ . .
U= Zlu,m sin # e’ (@imin%) (32)
n=
x N
Ur= Z})um cos 7 fe’ @t 4n%) (33)
n=

The frequency response function (F.R.F.) can be
estimated from Eq. {30) by setting external force
equal to unity.

3. Numerical Examples

A straight cylindrical shell with length L=
0.231 m, radius £=0.07725 m and thickness h=
0.0015m was considered as a numerical model.
The material of shell was taken as steel with
density 0s=7800 kg/m®, Poisson’s ration »=0.3
and Young’s Modulus E=2.05%X10" N/m? The
first case was a shell not containing fluid. The
second case was a shell containing stationary
fluid. The results by the presented method in the
first and second case were compared with those
by Nastran. Final case is a shell with the internal
fluid which has uniform velocity. All cases have
clamped-free boundary conditions as shown in
Fig. 3.
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Table 1 Degree of freedom of analysis model

Table 2 Natural frequency of the shell without fluid

Nastran Mode Natural Frequency [Hz]
Presented
(shell element) Experiment Nastran Presented
The number of 36 _ m| n |(Mazuch et al., (shell element) (beam-like
circumferential node 1996) shell element)
The number of axial node 21 21 1|3 616 645 635
The number of total node 756 21 1]2 708 818 816
D.O.F per node 5 4 114 945 983 948
Total D.O.F of model 3780 48 1|5 1479 1572 1480
2|4 1628 1709 1657
11 — 1824 1827
?F»»; HHE E 1851 1939 1844
- - ¢ + 213 1969 2074 2039
J b ‘ 16 2151 2349 2154
216 - 2581 2387
(a) Nastran (b) Presented model (beam-
(shell element) like shell element) s e i
e ez
Fig. 3 Element Type used in Numerical example etd e n=3
0.0 o 2;‘;
1E-3 N
Figure 3 shows the element type used in the €4 : §
numerical example. The shell element used in & '&° ‘ A
Nastran has 5 degree of freedom per node and i DR
needs additional division into 36 elements in :z;
circumferential direction. But the presented mo- 9
del doesn’t need the circumferential element and S0
has 4 degree of freedom per node. The reason is 111 oy . . ; .
. 0 500 1000 1500 2000
that the presented model has assumed the circum- Freq [H2]

ferential mode analytically. Table 1 shows the
number of nodes and degrees-of-freedom used
for the analysis. The cylindrical shell was divided
equally into 20 elements in the axial direction
for both Nastran (shell element) model and the
presented (beam-like shell element) model. So,
the number of degree-of-freedom by the present-
ed method was further less than that by Nastran.
Instead, the presented method must solve the
equations of motion for every order of circum-
ferential mode, #=0, 1, 2, ---.

3.1 A cylindrical shell without fluid

Table 2 showed the results by the experiments
(Mazuch et al., 1996), Nastran (2001) and the
presented method. Here, # is the order of a cir-
cumferential mode and m is the order of an axial

Fig. 4 A typical receptance of the shell according to
the order of % circumferential mode

mode. Calculating results correspond well with
experimental results. Therefore, natural frequen-
cies of the shell can be obtained effectively by
using a few elements. Figure 4 showed the F.R.F.
of the shell according to the order of the cir-
cumferential mode. An external force in radial
direction, F;, was applied on cylindrical shell
and receptance (displacement/force) was obtain-
ed at the driving point. Figure 5 showed the
comparison of the F.R.F. with the presented
method and Nastran. The summation of the
receptances shown in Fig. 4 is equal to the solid
line in Fig. 5. The presented method showed the
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Fig. 5 Receptance of the empty shell

reasonable results for both radial and axial com-
ponent comparing with the results by Nastran.
The discrepancy of F.R.F. is due to the dis-
crepancy of natural frequencies shown in Table 2.

3.2 A cylindrical shell with stationary fluid

In case that the shell is containing stationary
fluid, the fluid has an effect on the structure of
cylindrical shell as an added mass. Table 3 show-
ed that the natural frequencies decreased for all
modes comparing with the empty shell. The nu-
merical results correspond well with experimental
results (Mazuch et al., 1996). Table 4 showed
the thickness (%) of fluid which has the effect as
an added mass according to the circumferential
mode. At the first circumferential mode, the thick-
ness of fluid was the same as the radius of shell.
It means the fluid acts entirely on the added mass.

Table 3 Natural frequency of the shell with station-

ary fluid
Mode Natural Frequency [Hz]
Experiment Presented
m | n [(Mazuch et al., Nastran (beam-like
1996) | Shell element)l i lement)
113 388 404 373
1]2 421 480 434
1|4 628 652 602
Lt — 1036 883
1S 1027 1092 996
214 1094 1140 1054
215 1299 1360 1242
213 1245 1306 1202
6 1546 1699 1515
216 1748 1885 1680

Table 4 Effective thickness according to the order of
circumferential mode

n hs/R
1 1.000
2 0.500
3 0.333
4 0.251
5 0.202

But, the higher the circumferential modes, the
less the effective thickness of fluid acts on the
shell. Figure 6 shows the F.R.F. by Nastran and
the presented method. The results have a little dif-
ference. The reason is that Nastran and the pres-
ented method have a difference considering the
effect of the internal fluid. The added mass of the
fluid is considered to be constant in Nastran, but
in this paper, not only the added mass but also the
stiffness and the damping vary according to the
circumferential mode.

3.3 The effects of velocity of internal fluid
on FRF and natural frequency

When the fluid has a constant velocity, it in-

fluences mass, damping and stiffness of the shell.

Figure 7 showed the effects of the velocity of fluid

on FRF of cylindrical shell. As the velocity of
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Fig. 6 Receptance of the shell with stationary fluid

the fluid increases, damping increases at reson-
ance and natural frequencies shift down. The
comparison with Nastran is not available since
Nastran cannot solve this kind of problem. If
the fluid velocity goes up over the critical veloci-
ty, the first resonance frequency becomes negative
and the system becomes unstable.

4. Conclusions

(1) A cylindrical shell conveying fluid with
uniform velocity was formulated by the finite ele-
ment method. A beam-like shell element is used
instead of conventional shell element. Further less
number of elements could be used by this method
compared with conventional shell type element.
The accuracy by this method was not inferior to
that by conventional shell type element.

- wm 0 {mfs]
0.01 4 -n e vz 25{m/s)
------- v= 50im/s)
15*3'!
E-4 o }
165 5 |
UL l/
¥
187 4 '
18 4
1€-9 4
1€-10 T Y J
500 1000
Frog.[Hz]
(a) Radial component
v O fmist
€34 e v = 25{m/s]
~ ey 50[m/s)
1€:4
1E-8

18:8

L1
ey .._.,,,/'A" Ik f_

153
1€-8 ‘ \/ 7
168 1 ’
1E-10
1E-11 -+

c-
o
g
&

FreqHz)
(b) Axial component
Fig. 7 Effect of fluid velocity on receptance of shell

(2) The estimation of frequency response func-
tion of cylindrical shell was presented with ta-
king into consideration of the coupled effects of
internal fluid with uniform velocity. The results
by this method were compared with experiments
(Mazuch et al., 1996) and those by Nastran.

(3) The effects of effective thickness of the
internal fluid were estimated. The first circum-
ferential mode, the effective thickness was the
same as the shell element. The higher the mode
becomes, the thinner effective thickness was.

(4) The stationary fluid only had an added-
mass effect on the cylindrical shell. The internal
fluid with velocity had effects on the damping and
stiffness of the cylindrical shell. As the velocity of
the fluid increased, the stiffness decreased and the
damping increased, which make natural frequen-
cies lower and peak value smaller.
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