• 제목/요약/키워드: Frequency Response

검색결과 5,503건 처리시간 0.034초

감응성막의 유기가스 응답특성 분석 (The Analysis of Organic Gas Response Characteristic for Polymer Coating Materials)

  • 김정명;권영수;유승엽;최용성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.417-419
    • /
    • 1995
  • Polymer-coated piezoelectric crystals were applied to analyze response characteristic of organic gases. AT-cut quartz crystal with 9 MHz resonant frequency can measure mass of 1 nanogram. Flow type gas-sensing system was used in this experiment. Flow type gas-sensing system has very simple apparatus and shows very fast frequency response for injection of organic gas. We have made parameter using relaxation ratio of frequency response for organic gas. Consequently, we found that the parameter had no relation with quantity of gas injection and dipping.

  • PDF

공동을 고려한 원주방향 급유홈 저널 베어링의 비선형 진동 해석 (Nonlinear Frequency Response Analysis of Circumferentially Grooved Journal Bearing Considering Cavitation)

  • 노병후;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.160-166
    • /
    • 1999
  • Nonlinear characteristics of the hydrodynamic journal bearing with circumferentially groove are analyzed numerically considering cavitation region, when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width universal Reynolds equation at each time step. Frequency response function and journal orbit obtained from both linear and nonlinear bearing simulations are compared with each other. The vibration response of the journal is different from the expectation obtained from the linear analysis as increase the vibration amplitude of external disturbance. Therefore, the linear theory is not adequate, and the nonlinear calculation such as used in this research is needed to design safety rotor systems.

  • PDF

Modified Circulant Feedback Delay Networks (MCFDN's) for Artificial Reverberator Using a General Recursive Filter and CFDN's

  • Ko, Byeong-Seob;Kim, Hack-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권4E호
    • /
    • pp.31-36
    • /
    • 1999
  • Circulant Feedback Delay Networks (CFDN's), whose feedback matrix is circulant to control the stability of system and time-frequency response easier than unitary one, were recently proposed. However, the drawback of this structure is that the flatness of the frequency response of CFDN's is not enough and it is difficult to adjust the placement of zeros to decrease this problem. Therefore, we propose Modified CFDN's (MCFDN's) consisted of a general recursive filter and CFDN's to maintain maximally the impulse response of CFDN's and improve the flatness of frequency response without adjusting the placement of zeros. The delay unit of a general recursive filter's feedback loop is replaced by CFDN's, are omitted the direct path. We represent the usefulness of MCFDN's to build artificial reverberators and the main parameter to determine characteristics of MCFDN's in this paper.

  • PDF

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향 (Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect)

  • 박두희;하샤시 유세프;이현우;김재연
    • 한국지반공학회논문집
    • /
    • 제22권3호
    • /
    • pp.23-35
    • /
    • 2006
  • 등가선형해석은 지반증폭현상을 모사하기 위하여 널리 사용되고 있으며, 해석 시 흙의 거동은 하중의 주파수의 영향을 받지 않는다고 가정되어왔다. 반면, 실내시험은 점성토의 경우 하중의 주파수의 영향을 크게 받는다는 것을 보여주고 있다. 본 연구에서는 하중의 주파수가 흙의 동적 거동에 미치는 영향을 고려하는 새로운 등가선형해석기법이 개발되었으며 주파수의 영향을 규명하기 위하여 지반응답해석을 수행하였다. 해석 결과, 하중의 주파수에 따라서 변화하는 전단탄성계수가 지반응답에 미치는 영향은 작은 반면 감쇠비는 큰 영향을 끼치는 것으로 판명되었다. 이는 하중의 주파수가 높아질수록 흙의 감쇠비도 같이 증가하며 이로 인하여 지진파의 고주파수 요소가 필터링 되기 때문이다. 따라서, 하중의 주파수에 지배 받는 흙의 거동은 특히 고주파수 요소가 풍부한 지진파 전파 모사 시 특히 중요하다고 판단된다.

직경이 작은 유압관로에서의 동특성 (Dynamic Respeonse of Hydraulic Pipe Lines with a Relative Small Diameter)

  • 유영태
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.38-44
    • /
    • 1999
  • This paper primarily directed toward analyzing the frequency response in hydraulic pipe lines with a small diameter. The exact solution to the frequency response is obtained by using the complicated transfer function. The discrepancy with the exact and the approximate is small so the approximation solution is adopted to compare the experimental results with the theoretical analysis. In this experiment the input frequency was generated by the frequency generator with the ball valve and speed controller. In order to compare the theoretical were forms with the experimental ones the trace obtained from the oscilloscope is photographed, The diameter the length of lines and input pressure amplitude are varied to investigate their effects,. the experiment results show that th values of dimensionless parameter are very affected to the phase delay and guide response time in the design of pressure manifold to measure the pressure of hydraulic pipelines.

  • PDF

비선형 진동절연 시스템의 근사적 응답을 구하는 방법 (Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

VIBRATION PROPERTIES OF PEARS

  • Kim, M. S.;H. M. Jung;Park, I. K.;Park, J. M.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.533-542
    • /
    • 2000
  • Instrumentation and technologies are described for determining the vibration response characteristics of the pear with frequency range 5 to 320Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the pear was developed. Mechanical properties such bioyield deformation, rupture deformation and apparent elastic modulus etc. were compared with the vibration response characteristics of the pear. The resonant frequency of the pear ranged from 53 to 102Hz and the amplitude at resonance was between 1.08 and 2.48g-rms. The resonant frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF

디지털 푸리에 변환에서 누설오차의 개선 (The Improvement of Leakage Error in Digital courier Transform)

  • 정의봉;안세진;장호엽;장진혁
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.455-460
    • /
    • 2001
  • An exact spectrum wish no leakage error could be obtained when the period of the signal coincides perfectly with the record length. However, the record length will be determined regardless of the period of signal. The Leakage error due to this problem will gibe a distorted spectrum. In the conventional research, the method was proposed to estimate the three parameters, frequency, amplitude and phase angle, from the spectrum data for anundamped sinusoidal signal. In this paper, some techniques are proposed to estimate frequency, amplitude and damping ratios from the frequency response functions for damped signals. The validation of the proposed techniques is verified by several numerical examples.

  • PDF

축방향 왕복 운동을 하는 집중 질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석 (Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 홍정환;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.868-874
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the size and the location of the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.