• Title/Summary/Keyword: Frequency

Search Result 66,280, Processing Time 0.062 seconds

On the Application FH/SS Using Double Indirect Frequency Synthesizer (이중 간접 주파수 합성기를 이용한 FH/SS 적용에 관한 연구)

  • 정명덕;박재홍;김영민
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.76-84
    • /
    • 1999
  • For FH/SS communication, We discussed the method of indirect frequency synthesizer in several methods. The problem of sing1e frequency synthesizer using with PLL is a varied coefficient value of damping factor in frequency hopping time, which is caused unstable frequency. So. for stable frequency synthesizer, a coefficient of damping factor must be optimized and synthesized to be removed excessive response time. In this paper, we studied FH using with double loop frequency synthesizer which takes stable frequency. We made up a simulator and had a good performance(real time speed).

  • PDF

Design And Implementation of X-Band Frequency Synthesizer for Radar Transceiver (Radar Transceiver용 X-밴드 PLL 주파수 합성기 설계 및 제작)

  • Lee, Hyun-Soo;Park, Dong-Kook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • A frequency synthesizer of 10 GHz $\sim$ 11 GHz for FMCW radar is designed and implemented by the form of indirect frequency synthesizer of a single loop structure. The synthesizer uses a high speed digital PLL chip. It is difficult to divide directly by using a program counter of PLL chip because the output frequency of VCO is 10 GHz $\sim$ 11 GHz, so we lower the frequency to 625 MHz $\sim$ 687.5 MHz by using a prescaler, and then divide the frequency by the program counter. The output frequency sweep of VCO from 10 GHz to 11 GHz is measured.

  • PDF

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

A Study on Low Phase Noise Frequency Synthesizer Design for Satellite Terminal (위성통신 단말용 저 위상잡음 주파수 합성기 설계에 관한 연구)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Hong, Sung-Yong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • In this paper, we present the high resolution and low phase noise frequency synthesizer for satellite terminal. To improve the phase noise of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise. The implemented frequency synthesizer reduce the phase noise and show the high resolution. The output power of this frequency synthesizer is over -2dBm in 950~1450MHz and the phase noise of the -101dBc/Hz at 10kHz frequency offset.

A Clinical Study on Intraventricular Conduction Disturbance Following Repair of Ventricular Septal Defect (VSD 수술후 심실내 전도장애에 관한 임상적 연구)

  • Lee, Geon-U;Kim, Geun-Ho
    • Journal of Chest Surgery
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 1985
  • The frequency of intraventricular conduction disturbance [IVCD] following right ventriculotomy and right atriotomy approach for ventricular septal defect [VSD] closure was compared in various conditions. Of the 170 isolated VSD patients, 114 patients were repaired via right ventriculotomy and 56 patients were repaired via right atriotomy. The results were as follows; 1. The frequency of IVCD was 45.6% in right ventriculotomy, and 21.2% in right atriotomy group [P<0.01]. The frequency of IVCD following transverse ventriculotomy and vertical ventriculotomy was not significantly different. 2. The frequency of IVCD in subarterial VSD following right ventriculotomy and right atriotomy was not significantly different. But the frequency of IVCD in perimembranous VSD was 50.8% in right ventriculotomy and 27.5% in right atriotomy group [P<0.01]. 3. The frequency of IVCD was higher in groups with larger VSD and it was more significant in right ventriculotomy group. 4. The frequency of IVCD was higher in patch graft closure and it was more significant in right ventriculotomy group. 5. Overall frequency of IVCD was lower in right atriotomy than right ventriculotomy group.

  • PDF

A Comparative Study of Frequency Estimation Techniques using High Speed FIR Filter and Phasor Angle between Two Phasors (고속 FIR 필터와 두 페이저 위상을 이용한 주파수 추정 알고리즘의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Frequency is an important operating parameter of a power system. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And frequency measurement devices have need to measure a fast and accurate of frequency using voltage signals. This paper proposes a comparative study of frequency estimation techniques using the high speed FIR filter based algorithm, the DFT filter based algorithm using phasor angle between two phasors, and positive sequence component based algorithm using the half angle between two successive positions of phasor. The discussed three techniques have been formed through numerical manipulation of a discrete system. The proposed techniques have been tested using signals obtained from selected power system model using ATP simulation package. Some test results are shown in this paper.

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • Lee, Gun-Myung;Koss, L.L.;Lee, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.182-186
    • /
    • 2002
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker. The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they will be utilized to design efficient low frequency shakers.

  • PDF

High Frequency Circuit Design using Feedback Control with Body Load Fluctuation for Pain Relief Therapy (통증 완화 치료기용 인체 부하 변동에 따른 피드백 제어가 가능한 고주파 회로 설계)

  • Park, Chul-Won;Won, Chul-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • High frequency system has been used for the purpose of skin care and obesity treatment, by high-frequency energy is applied to the human body generates deep heat. Conventional high frequency system could not selection control by depending on the body load fluctuations. Such as burns and side effects have been reported by system instability and then therapeutic effect is insufficient. During treatment, objective information about the status of the patient was no. Because of treatment methods are subjective, and so tailored treatments were impossible. In this paper, high frequency medical system with sinusoidal frequency characteristics without distortion of the Push pull switching scheme for pain relief therapy was designed. And control circuit that was designed by feedback using the output changes according to the body-load fluctuation. Last, power circuit for efficient control the heat generated from the hardware was proposed.