• Title/Summary/Keyword: Freeze damage

Search Result 155, Processing Time 0.025 seconds

An Evaluation of Resistances in Porous Asphalt Concrete Mixtures due to Repeated Cyclic Freeze-Thawing (배수성 아스팔트콘크리트 혼합물의 반복 동결융해 저항성 평가)

  • Jo, Shin Haeng;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.33-39
    • /
    • 2012
  • More and more pavements are suffering from damage these days due to the below-zero winter temperatures and frequent snowfalls. From this research, the freeze-thawing mechanisms of pavements will be observed, and the freeze-thawing resistance of porous asphalt concrete mixture is to be evaluated according to various assessment methods. The investigation was conducted through applying rigid and flexible pavements to freeze-thawing resistance experiments, which include various experiments such as deformation rate measurements, Lottman tests, repeated cyclic freeze-thawing experiments, stripping resistance tests and so on. Test results revealed that the porous asphalt concrete had less deformations according to temperatures compared to dense-graded asphalt concrete due to the 20% void gap. In addition, according to the freeze-thawing repetition experiments which are effected by moisture, the porous asphalt concrete mixture showed superior resistance to repeated cyclic freeze-thawing compared to other asphalt concrete mixtures due to the drainage and the voids within the specimen.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

Classification of cold regions and analysis of the freeze-thaw repetition cycle based on heat transfer quantity by freezing test (실내동결시험을 통한 열류량 분석에 따른 동결-융해 조건 분석 및 한랭지역의 분류)

  • An, Jai-Wook;Seo, Jeong-Eun;Jung, Min-Hyung;Seong, Joo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.957-972
    • /
    • 2018
  • Tunnels constructed in cold regions can cause serious defects such as cracks and leaks due to external temperature changes in the portals and vents. In order to prevent the freezing damage of the tunnel, appropriate measures should be applied to the section where the freeze damage is concerned. However, the specific criteria and contents for judging whether or not the anti-freeze measures are applied are not presented. In this study, the laboratory freezing tests on the temperature changes of the concrete specimens under freezing conditions were carried out. And the freeze-thaw repetition cycle (F), which can judge the possibility of freezing damage, were presented based on the heat transfer quantity (W) by experimental results of case studies. Also, we propose a classification of cold regions considering the climatic characteristics of Korea for using it to efficient design and maintenance.

Review of Adequacy for On-Site Application of Concrete Freeze-Thaw Damage Evaluation Method Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상 판정법의 현장 적용 적정성 검토)

  • Ji-Sun, Park;Jong-Suk, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.539-546
    • /
    • 2022
  • The current 「Detailed guidelines for the safety and maintenance of facilities (performance Evaluation)」 prescribes that the durability of surface concrete is evaluated by comparing the measuring the surface rebound value between sound parts and non-sound parts that have surface damage due to winter rain or leakage on concrete. However, this evaluation method was proposed by analyzing the correlation with an experimental DB obtained under freeze-thaw simulation promoting the environment without reviewing on-site applicability. Therefore, this study reviewed on-site application appropriateness of the concrete freeze-thaw damage evaluation method for the 21 concrete bridges in Korea. From the results, it was clearly confirmed that there was a difference in the surface rebound value between the sound part and the non-sound on the concrete surface; the current evaluation method is considered appropriate for application at the site. In addition, the necessity of adding a specific method and a measurement position of surface rebound value were also analyzed, and the effectiveness of the current evaluation method was also analyzed when targeting the entire concrete bridge, not the evaluation of some sections.

Properties of Cold Weather Concrete Using Anti-freeze Agent Based Formate-acetate (포름산-아세트산염계 방동제를 사용한 콘크리트의 특성)

  • Jo, Hyun-Tae;Kim, Ho-Soo;Chun, Jun-Young;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.617-620
    • /
    • 2008
  • When fresh concrete is exposed to the cold weather, the concrete may happen frost damage because of freezing at early ages and the strength development may be go down. Therefore, this paper is intend to investigate the properties and availabilities of cold weather concrete using anti-freeze based formate-acetate for ensure of excellent concrete quality on cold temperature. According to test result for concrete in anti-freeze agent, strength properties in sub-zero temperature increases in comparison with concrete of non anti-freeze agent without decline of strength until later age. When anti-freezing agent is added by 3.0% to binder, it gives good effects on the performance of the fresh and harden concrete.

  • PDF

Preparation and Quality of Dried Yam Chip Snack Coated with Ascorbic Acid Cocrystallized Sucrose

  • Kim, Suk-Shin;Koh, Kyung-Hee;Son, Sook-Mee;Oh, Myung-Suk
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.661-666
    • /
    • 2005
  • The specific objectives of this study were to dry yam chips using microwave vacuum drying, freeze drying and hot air drying, then to coat the dried yam chips with ascorbic acid cocrystallized sucrose, and finally to compare the quality of yam chip snack foods with respect to drying and coating characteristics. The microwave vacuum dried sample showed the highest drying rates and much less surface damage than the hot air dried one did. The shape and color of the microwave vacuum dried/coated sample were allocated between those of the freeze dried/coated sample and the hot air dried/coated sample. The freeze dried/coated sample scored excessively low in organoleptic hardness and chewiness to be suitable as a snack. The hot air dried/coated sample was too deep in color, wrinkled, excessively high in organoleptic hardness and chewiness, and excessively low in mouthfeeling. Therefore, the microwave vacuum dried/coated sample presented the best overall attributes as a snack, with respect to organoleptic characteristics, shape, color, and drying rates.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.