• Title/Summary/Keyword: Free-surface motion

Search Result 317, Processing Time 0.027 seconds

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

NUMERICAL STUDY ON COOLING CHARACTERISTICS OF MULTIPLE IMPINGING JETS INCLUDING THE EFFECT OF TURBULENCE (난류 효과를 포함한 다중 충돌 제트의 냉각 특성에 대한 수치적 연구)

  • Jeon, J.H.;Son, G.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.321-328
    • /
    • 2009
  • Free surface impinging jet on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The free surface of liquid-gas interface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further improved by employing a nonequilibrium $\kappa-\varepsilon$ turbulence model including the effect of low Reynolds number. The computations are made to investigate the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Lee, B.H.;Jung, S.J.;Kim, Y.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Park, J.C.;Lee, B.H.;Jung, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.258-263
    • /
    • 2007
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

  • PDF

Numerical Sloshing Analysis of LNG Carriers in Irregular Waves (실해역 상태를 고려한 LNG 선박의 SLOSHING 해석)

  • Park Jong Jin;Kim Mun Sung;Kim Young Bok;Ha Mun Keun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF

Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method (입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.

A study on the Motions of a ship with Liquid Cargo Tanks (화물창의 유체유동을 고려한 선체운동에 관한 연구)

  • 박명규;김순갑;김동준
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

A Study on Behavior of Rectangular Liquid Storage Structures (직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구)

  • 박장호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.